1
|
Lu B, Woloszyn K, Ohayon YP, Yang B, Zhang C, Mao C, Seeman NC, Vecchioni S, Sha R. Programmable 3D Hexagonal Geometry of DNA Tensegrity Triangles. Angew Chem Int Ed Engl 2023; 62:e202213451. [PMID: 36520622 DOI: 10.1002/anie.202213451] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Non-canonical interactions in DNA remain under-explored in DNA nanotechnology. Recently, many structures with non-canonical motifs have been discovered, notably a hexagonal arrangement of typically rhombohedral DNA tensegrity triangles that forms through non-canonical sticky end interactions. Here, we find a series of mechanisms to program a hexagonal arrangement using: the sticky end sequence; triangle edge torsional stress; and crystallization condition. We showcase cross-talking between Watson-Crick and non-canonical sticky ends in which the ratio between the two dictates segregation by crystal forms or combination into composite crystals. Finally, we develop a method for reconfiguring the long-range geometry of formed crystals from rhombohedral to hexagonal and vice versa. These data demonstrate fine control over non-canonical motifs and their topological self-assembly. This will vastly increase the programmability, functionality, and versatility of rationally designed DNA constructs.
Collapse
Affiliation(s)
- Brandon Lu
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Karol Woloszyn
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Yoel P Ohayon
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Bena Yang
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Cuizheng Zhang
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Chengde Mao
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Nadrian C Seeman
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Simon Vecchioni
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Ruojie Sha
- Department of Chemistry, New York University, New York, NY 10003, USA
| |
Collapse
|
2
|
Shi Y, Lv Q, Tao Y, Ma Y, Wang X. Design and Growth of Branched Organic Crystals: Recent Advances and Future Applications. Angew Chem Int Ed Engl 2022; 61:e202208768. [DOI: 10.1002/anie.202208768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Ying‐Li Shi
- Department of Electrical and Electronic Engineering Xi'an Jiaotong-Liverpool University Suzhou Jiangsu 215123 P. R. China
| | - Qiang Lv
- Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Yi‐Chen Tao
- Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Ying‐Xin Ma
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo Shandong 255000 P. R. China
| | - Xue‐Dong Wang
- Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou Jiangsu 215123 P. R. China
| |
Collapse
|
3
|
Shi YL, Lv Q, Tao YC, Ma YX, Wang XD. Design and Growth of Branched Organic Crystals: Recent Advances and Future Applications. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ying-Li Shi
- The University of Hong Kong Physics The University of Hong Kong 999077 Hong Kong HONG KONG
| | - Qiang Lv
- Soochow University Institute of Functional Nano & Soft Materials (FUNSOM) CHINA
| | - Yi-Chen Tao
- Soochow University Institute of Functional Nano & Soft Materials (FUNSOM) CHINA
| | - Ying-Xin Ma
- Shandong University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Xue-Dong Wang
- Soochow University Institute of Functional Nano and Soft Materials 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, Jiangsu 215123 Suzhou CHINA
| |
Collapse
|
4
|
Wang X, Deshmukh R, Sha R, Birktoft JJ, Menon V, Seeman NC, Canary JW. Orienting an Organic Semiconductor into DNA 3D Arrays by Covalent Bonds. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiao Wang
- Department of Chemistry New York University New York NY 10003 USA
| | - Rahul Deshmukh
- Department of Physics City College of New York New York NY 10031 USA
| | - Ruojie Sha
- Department of Chemistry New York University New York NY 10003 USA
| | - Jens J. Birktoft
- Department of Chemistry New York University New York NY 10003 USA
| | - Vinod Menon
- Department of Physics City College of New York New York NY 10031 USA
| | | | - James W. Canary
- Department of Chemistry New York University New York NY 10003 USA
| |
Collapse
|
5
|
Wang X, Deshmukh R, Sha R, Birktoft JJ, Menon V, Seeman NC, Canary JW. Orienting an Organic Semiconductor into DNA 3D Arrays by Covalent Bonds. Angew Chem Int Ed Engl 2021; 61:e202115155. [PMID: 34847266 DOI: 10.1002/anie.202115155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Indexed: 11/07/2022]
Abstract
A quasi-one-dimensional organic semiconductor, hepta(p-phenylene vinylene) (HPV), was incorporated into a DNA tensegrity triangle motif using a covalent strategy. 3D arrays were self-assembled from an HPV-DNA pseudo-rhombohedron edge by rational design and characterized by X-ray diffraction. Templated by the DNA motif, HPV molecules exist as single-molecule fluorescence emitters at the concentration of 8 mM within the crystal lattice. The anisotropic fluorescence emission from HPV-DNA crystals indicates HPV molecules are well aligned in the macroscopic 3D DNA lattices. Sophisticated nanodevices and functional materials constructed from DNA can be developed from this strategy by addressing functional components with molecular accuracy.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Rahul Deshmukh
- Department of Physics, City College of New York, New York, NY 10031, USA
| | - Ruojie Sha
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Jens J Birktoft
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Vinod Menon
- Department of Physics, City College of New York, New York, NY 10031, USA
| | - Nadrian C Seeman
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - James W Canary
- Department of Chemistry, New York University, New York, NY 10003, USA
| |
Collapse
|
6
|
Simmons CR, MacCulloch T, Zhang F, Liu Y, Stephanopoulos N, Yan H. A Self-Assembled Rhombohedral DNA Crystal Scaffold with Tunable Cavity Sizes and High-Resolution Structural Detail. Angew Chem Int Ed Engl 2020; 59:18619-18626. [PMID: 32533629 DOI: 10.1002/anie.202005505] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Indexed: 11/08/2022]
Abstract
DNA is an ideal molecule for the construction of 3D crystals with tunable properties owing to its high programmability based on canonical Watson-Crick base pairing, with crystal assembly in all three dimensions facilitated by immobile Holliday junctions and sticky end cohesion. Despite the promise of these systems, only a handful of unique crystal scaffolds have been reported. Herein, we describe a new crystal system with a repeating sequence that mediates the assembly of a 3D scaffold via a series of Holliday junctions linked together with complementary sticky ends. By using an optimized junction sequence, we could determine a high-resolution (2.7 Å) structure containing R3 crystal symmetry, with a slight subsequent improvement (2.6 Å) using a modified sticky-end sequence. The immobile Holliday junction sequence allowed us to produce crystals that provided unprecedented atomic detail. In addition, we expanded the crystal cavities by 50 % by adding an additional helical turn between junctions, and we solved the structure to 4.5 Å resolution by molecular replacement.
Collapse
Affiliation(s)
- Chad R Simmons
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Tara MacCulloch
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Fei Zhang
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Yan Liu
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Nicholas Stephanopoulos
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Hao Yan
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
7
|
Simmons CR, MacCulloch T, Zhang F, Liu Y, Stephanopoulos N, Yan H. A Self‐Assembled Rhombohedral DNA Crystal Scaffold with Tunable Cavity Sizes and High‐Resolution Structural Detail. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chad R. Simmons
- Biodesign Center for Molecular Design and Biomimetics Arizona State University USA
- School of Molecular Sciences Arizona State University Tempe AZ 85287 USA
| | - Tara MacCulloch
- Biodesign Center for Molecular Design and Biomimetics Arizona State University USA
- School of Molecular Sciences Arizona State University Tempe AZ 85287 USA
| | - Fei Zhang
- Biodesign Center for Molecular Design and Biomimetics Arizona State University USA
- School of Molecular Sciences Arizona State University Tempe AZ 85287 USA
| | - Yan Liu
- Biodesign Center for Molecular Design and Biomimetics Arizona State University USA
- School of Molecular Sciences Arizona State University Tempe AZ 85287 USA
| | - Nicholas Stephanopoulos
- Biodesign Center for Molecular Design and Biomimetics Arizona State University USA
- School of Molecular Sciences Arizona State University Tempe AZ 85287 USA
| | - Hao Yan
- Biodesign Center for Molecular Design and Biomimetics Arizona State University USA
- School of Molecular Sciences Arizona State University Tempe AZ 85287 USA
| |
Collapse
|
8
|
|
9
|
Hong F, Jiang S, Lan X, Narayanan RP, Šulc P, Zhang F, Liu Y, Yan H. Layered-Crossover Tiles with Precisely Tunable Angles for 2D and 3D DNA Crystal Engineering. J Am Chem Soc 2018; 140:14670-14676. [PMID: 30336007 DOI: 10.1021/jacs.8b07180] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
DNA tile-based assembly provides a promising bottom-up avenue to create designer two-dimensional (2D) and three-dimensional (3D) crystalline structures that may host guest molecules or nanoparticles to achieve novel functionalities. Herein, we introduce a new kind of DNA tiles (named layered-crossover tiles) that each consists of two or four pairs of layered crossovers to bridge DNA helices in two neighboring layers with precisely predetermined relative orientations. By providing proper matching rules for the sticky ends at the terminals, these layered-crossover tiles are able to assemble into 2D periodic lattices with precisely controlled angles ranging from 20° to 80°. The layered-crossover tile can be slightly modified and used to successfully assemble 3D lattice with dimensions of several hundred micrometers with tunable angles as well. These layered-crossover tiles significantly expand the toolbox of DNA nanotechnology to construct materials through bottom-up approaches.
Collapse
Affiliation(s)
- Fan Hong
- Center for Molecular Design and Biomimetics at the Biodesign Institute and School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States
| | - Shuoxing Jiang
- Center for Molecular Design and Biomimetics at the Biodesign Institute and School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States
| | - Xiang Lan
- Center for Molecular Design and Biomimetics at the Biodesign Institute and School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States
| | - Raghu Pradeep Narayanan
- Center for Molecular Design and Biomimetics at the Biodesign Institute and School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States
| | - Petr Šulc
- Center for Molecular Design and Biomimetics at the Biodesign Institute and School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States
| | - Fei Zhang
- Center for Molecular Design and Biomimetics at the Biodesign Institute and School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States
| | - Yan Liu
- Center for Molecular Design and Biomimetics at the Biodesign Institute and School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States
| | - Hao Yan
- Center for Molecular Design and Biomimetics at the Biodesign Institute and School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States
| |
Collapse
|