1
|
Kumar P, Vijay Jagtap A, Gupta S, Vinod CP. La-Cu based heterogeneous perovskite catalyst for highly selective benzene hydroxylation under mild conditions. Chem Asian J 2022; 17:e202200788. [PMID: 36216572 DOI: 10.1002/asia.202200788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/19/2022] [Indexed: 11/09/2022]
Abstract
Direct hydroxylation of benzene towards phenol with high conversion and selectivity remains a great challenge. We report herein an efficient La2 CuO4 perovskite catalyst for one-step oxidation of benzene using hydrogen peroxide under mild conditions. The catalyst was characterized using XRD, TEM, XPS, TG-DTA, and other advanced techniques. The one-pot hydroxylation reaction carried out at 60 °C under optimum reaction conditions in the presence of catalytic material shows benzene to phenol transformation with 51% conversion with >99% selectivity with 65 percent peroxide efficiency, respectively. The influence of reaction conditions such as temperature, amount of oxidant, reaction time and mode of addition of the oxidant was crucial in selectivity optimization.
Collapse
Affiliation(s)
- Pawan Kumar
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008, Pune, Maharashtra, India.,Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Anuradha Vijay Jagtap
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008, Pune, Maharashtra, India.,Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Sharad Gupta
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008, Pune, Maharashtra, India
| | - Chathakudath P Vinod
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008, Pune, Maharashtra, India.,Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| |
Collapse
|
2
|
Rajeev A, Balamurugan M, Sankaralingam M. Rational Design of First-Row Transition Metal Complexes as the Catalysts for Oxidation of Arenes: A Homogeneous Approach. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anjana Rajeev
- Bioinspired & Biomimetic Inorganic Chemistry Lab, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Mani Balamurugan
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Muniyandi Sankaralingam
- Bioinspired & Biomimetic Inorganic Chemistry Lab, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| |
Collapse
|
3
|
Qi H, Xu D, Lin J, Sun W. Copper-catalyzed direct hydroxylation of arenes to phenols with hydrogen peroxide. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Gu Y, Li Q, Zang D, Huang Y, Yu H, Wei Y. Light‐Induced Efficient Hydroxylation of Benzene to Phenol by Quinolinium and Polyoxovanadate‐Based Supramolecular Catalysts. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yaqi Gu
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Haidian District Beijing 100084 P. R. China
| | - Qi Li
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Haidian District Beijing 100084 P. R. China
| | - Dejin Zang
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Haidian District Beijing 100084 P. R. China
| | - Yichao Huang
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Haidian District Beijing 100084 P. R. China
| | - Han Yu
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Haidian District Beijing 100084 P. R. China
| | - Yongge Wei
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Haidian District Beijing 100084 P. R. China
- State Key Laboratory of Natural and Biomimetic Drugs Peking University Beijing 100191 P. R. China
| |
Collapse
|
5
|
Gu Y, Li Q, Zang D, Huang Y, Yu H, Wei Y. Light-Induced Efficient Hydroxylation of Benzene to Phenol by Quinolinium and Polyoxovanadate-Based Supramolecular Catalysts. Angew Chem Int Ed Engl 2021; 60:13310-13316. [PMID: 32905640 DOI: 10.1002/anie.202011164] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Indexed: 11/06/2022]
Abstract
Direct Hydroxylation of benzene to phenol with high yield and selectivity has been the goal of phenol industrial production. Photocatalysis can serve as a competitive method to realize the hydroxylation of benzene to phenol owing to its cost-effective and environmental friendliness, however it is still a forbidding challenge to obtain good yield, high selectivity and high atom availability meanwhile. Here we show a series of supramolecular catalysts based on alkoxohexavanadate anions and quinolinium ions for the photocatalytic hydroxylation of benzene to phenol under UV irradiation. We demonstrate that polyoxoalkoxovanadates can serve as efficient catalysts which can not only stabilize quinolinium radicals but also reuse H2 O2 produced by quinolinium ions under light irradiation to obtain excellent synergistic effect, including competitive good yield (50.1 %), high selectivity (>99 %) and high atom availability.
Collapse
Affiliation(s)
- Yaqi Gu
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Haidian District, Beijing, 100084, P. R. China
| | - Qi Li
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Haidian District, Beijing, 100084, P. R. China
| | - Dejin Zang
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Haidian District, Beijing, 100084, P. R. China
| | - Yichao Huang
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Haidian District, Beijing, 100084, P. R. China
| | - Han Yu
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Haidian District, Beijing, 100084, P. R. China
| | - Yongge Wei
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Haidian District, Beijing, 100084, P. R. China.,State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, P. R. China
| |
Collapse
|
6
|
Masferrer‐Rius E, Borrell M, Lutz M, Costas M, Klein Gebbink RJM. Aromatic C−H Hydroxylation Reactions with Hydrogen Peroxide Catalyzed by Bulky Manganese Complexes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001590] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Eduard Masferrer‐Rius
- Organic Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Margarida Borrell
- Institut de Química Computacional i Catàlisi (IQCC) Departament de Química Universitat de Girona Campus Montilivi E-17071 Girona, Catalonia Spain
| | - Martin Lutz
- Structural Biochemistry Bijvoet Centre for Biomolecular Research Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
| | - Miquel Costas
- Institut de Química Computacional i Catàlisi (IQCC) Departament de Química Universitat de Girona Campus Montilivi E-17071 Girona, Catalonia Spain
| | - Robertus J. M. Klein Gebbink
- Organic Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| |
Collapse
|
7
|
One-Step Catalytic or Photocatalytic Oxidation of Benzene to Phenol: Possible Alternative Routes for Phenol Synthesis? Catalysts 2020. [DOI: 10.3390/catal10121424] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Phenol is an important chemical compound since it is a precursor of the industrial production of many materials and useful compounds. Nowadays, phenol is industrially produced from benzene by the multi-step “cumene process”, which is energy consuming due to high temperature and high pressure. Moreover, in the “cumene process”, the highly explosive cumene hydroperoxide is produced as an intermediate. To overcome these disadvantages, it would be useful to develop green alternatives for the synthesis of phenol that are more efficient and environmentally benign. In this regard, great interest is devoted to processes in which the one-step oxidation of benzene to phenol is achieved, thanks to the use of suitable catalysts and oxidant species. This review article discusses the direct oxidation of benzene to phenol in the liquid phase using different catalyst formulations, including homogeneous and heterogeneous catalysts and photocatalysts, and focuses on the reaction mechanisms involved in the selective conversion of benzene to phenol in the liquid phase.
Collapse
|
8
|
Abstract
Metal-oxyl (Mn+-O•) complexes having an oxyl radical ligand, which are electronically equivalent to well-known metal-oxo (M(n+1)+═O) complexes, are surveyed as a new category of metal-based oxidants. Detection and characterization of Mn+-O• species have been made in some cases, although proposals and characterization of the species are mostly done on the basis of density functional theory (DFT) calculations. The reactivity of Mn+-O• complexes will provide a way to achieve potentially difficult oxidative conversion of substrates. This Viewpoint will provide state-of-the-art knowledge on the Mn+-O• species in terms of the formation, characterization, and DFT-based proposals to shed light on the characteristics of the intriguing oxidatively active species.
Collapse
Affiliation(s)
- Yoshihiro Shimoyama
- Department of Chemistry, Faculty of Pure and Applied Sciences , University of Tsukuba , Tsukuba , Ibaraki 305-8571 , Japan.,Interdisciplinary Research Center for Catalytic Chemistry , National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba , Ibaraki 305-8565 , Japan
| | - Takahiko Kojima
- Department of Chemistry, Faculty of Pure and Applied Sciences , University of Tsukuba , Tsukuba , Ibaraki 305-8571 , Japan
| |
Collapse
|
9
|
Khenkin AM, Somekh M, Carmieli R, Neumann R. Electrochemical Hydroxylation of Arenes Catalyzed by a Keggin Polyoxometalate with a Cobalt(IV) Heteroatom. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Alexander M. Khenkin
- Department of Organic Chemistry; Weizmann Institute of Science; Rehovot 76100 Israel
| | - Miriam Somekh
- Department of Organic Chemistry; Weizmann Institute of Science; Rehovot 76100 Israel
| | - Raanan Carmieli
- Department of Chemical Research Support; Weizmann Institute of Science; Rehovot 76100 Israel
| | - Ronny Neumann
- Department of Organic Chemistry; Weizmann Institute of Science; Rehovot 76100 Israel
| |
Collapse
|
10
|
Khenkin AM, Somekh M, Carmieli R, Neumann R. Electrochemical Hydroxylation of Arenes Catalyzed by a Keggin Polyoxometalate with a Cobalt(IV) Heteroatom. Angew Chem Int Ed Engl 2018. [PMID: 29537140 DOI: 10.1002/anie.201801372] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The sustainable, selective direct hydroxylation of arenes, such as benzene to phenol, is an important research challenge. An electrocatalytic transformation using formic acid to oxidize benzene and its halogenated derivatives to selectively yield aryl formates, which are easily hydrolyzed by water to yield the corresponding phenols, is presented. The formylation reaction occurs on a Pt anode in the presence of [CoIII W12 O40 ]5- as a catalyst and lithium formate as an electrolyte via formation of a formyloxyl radical as the reactive species, which was trapped by a BMPO spin trap and identified by EPR. Hydrogen was formed at the Pt cathode. The sum transformation is ArH+H2 O→ArOH+H2 . Non-optimized reaction conditions showed a Faradaic efficiency of 75 % and selective formation of the mono-oxidized product in a 35 % yield. Decomposition of formic acid into CO2 and H2 is a side-reaction.
Collapse
Affiliation(s)
- Alexander M Khenkin
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Miriam Somekh
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Raanan Carmieli
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Ronny Neumann
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|