1
|
Yu R, Cai S, Li C, Fang X. Nickel‐Catalyzed Asymmetric Hydroaryloxy‐ and Hydroalkoxycarbonylation of Cyclopropenes. Angew Chem Int Ed Engl 2022; 61:e202200733. [DOI: 10.1002/anie.202200733] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Indexed: 12/19/2022]
Affiliation(s)
- Rongrong Yu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Song‐Zhou Cai
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Can Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Xianjie Fang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
2
|
Ishida Y, Nishikata T. Radical/Iminium Domino Strategy (RIDS) for Rapid Construction of Sterically Congested γ‐Lactam‐Based Multiheterocycles. Chemistry 2022; 28:e202201047. [DOI: 10.1002/chem.202201047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Yuto Ishida
- Graduate School of Science and Engineering Yamaguchi University 2-16-1 Tokiwadai Ube Yamaguchi 755-8611 Japan
| | - Takashi Nishikata
- Graduate School of Science and Engineering Yamaguchi University 2-16-1 Tokiwadai Ube Yamaguchi 755-8611 Japan
| |
Collapse
|
3
|
Nickel‐Catalyzed Asymmetric Hydroaryloxy‐ and Hydroalkoxycarbonylation of Cyclopropenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Pedersen SS, Donslund AS, Mikkelsen JH, Bakholm OS, Papp F, Jensen KB, Gustafsson MBF, Skrydstrup T. A Nickel(II)-Mediated Thiocarbonylation Strategy for Carbon Isotope Labeling of Aliphatic Carboxamides. Chemistry 2021; 27:7114-7123. [PMID: 33452676 DOI: 10.1002/chem.202005261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Indexed: 12/15/2022]
Abstract
A series of pharmaceutically relevant small molecules and biopharmaceuticals bearing aliphatic carboxamides have been successfully labeled with carbon-13. Key to the success of this novel carbon isotope labeling technique is the observation that 13 C-labeled NiII -acyl complexes, formed from a 13 CO insertion step with NiII -alkyl intermediates, rapidly react in less than one minute with 2,2'-dipyridyl disulfide to quantitatively form the corresponding 2-pyridyl thioesters. Either the use of 13 C-SilaCOgen or 13 C-COgen allows for the stoichiometric addition of isotopically labeled carbon monoxide. Subsequent one-pot acylation of a series of structurally diverse amines provides the desired 13 C-labeled carboxamides in good yields. A single electron transfer pathway is proposed between the NiII -acyl complexes and the disulfide providing a reactive NiIII -acyl sulfide intermediate, which rapidly undergoes reductive elimination to the desired thioester. By further optimization of the reaction parameters, reaction times down to only 11 min were identified, opening up the possibility of exploring this chemistry for carbon-11 isotope labeling. Finally, this isotope labeling strategy could be adapted to the synthesis of 13 C-labeled liraglutide and insulin degludec, representing two antidiabetic drugs.
Collapse
Affiliation(s)
- Simon S Pedersen
- Carbon Dioxide Activation Center (CADIAC), Department of, Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Aske S Donslund
- Carbon Dioxide Activation Center (CADIAC), Department of, Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Jesper H Mikkelsen
- Carbon Dioxide Activation Center (CADIAC), Department of, Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Oskar S Bakholm
- Carbon Dioxide Activation Center (CADIAC), Department of, Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Florian Papp
- Carbon Dioxide Activation Center (CADIAC), Department of, Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Kim B Jensen
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark
| | - Magnus B F Gustafsson
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC), Department of, Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| |
Collapse
|
5
|
Wu FP, Wu XF. Ligand-Controlled Copper-Catalyzed Regiodivergent Carbonylative Synthesis of α-Amino Ketones and α-Boryl Amides from Imines and Alkyl Iodides. Angew Chem Int Ed Engl 2021; 60:695-700. [PMID: 32991025 DOI: 10.1002/anie.202012251] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/22/2020] [Indexed: 12/16/2022]
Abstract
Regioselective transformation is among the long-standing challenges in organic synthesis. In this communication, a copper-catalyzed selectivity controlled regiodivergent borocarbonylation of imines with alkyl iodides has been developed. Various α-amino ketones and α-boryl amides were produced in moderate to good yields from the same substrates. The choice of the ligand is key for the regioselectivity control: α-amino ketones were produced selectively in good yields with (p-CF3 C6 H4 )3 P as the ligand, whereas the corresponding α-boryl amides were obtained with high regioselectivities when using Me IMes as the ligand.
Collapse
Affiliation(s)
- Fu-Peng Wu
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany.,Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
| |
Collapse
|
6
|
Wu F, Wu X. Ligand‐Controlled Copper‐Catalyzed Regiodivergent Carbonylative Synthesis of α‐Amino Ketones and α‐Boryl Amides from Imines and Alkyl Iodides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Fu‐Peng Wu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Xiao‐Feng Wu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Straße 29a 18059 Rostock Germany
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian Liaoning China
| |
Collapse
|
7
|
Shaifali, Ram S, Thakur V, Das P. Synthesis of α,β-alkynyl ketones via the nickel catalysed carbonylative Sonogashira reaction using oxalic acid as a sustainable C1 source. Org Biomol Chem 2019; 17:7036-7041. [PMID: 31290509 DOI: 10.1039/c9ob01064e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An efficient and economic nickel-dppb catalyzed, carbonylative Sonogashira cross-coupling reaction was demonstrated to provide rapid access to various α,β-alkynyl ketones from aryl iodides and terminal alkynes using oxalic acid as the ex situ C1 source in a double vial (DV) system. Notably, the role of the ligand in combination with the Ni catalyst for the selective formation of carbonylative Sonogashira products was investigated and supported with control experiments. Yet, no reports are available for carbonylative Sonogashira coupling by using a CO-surrogate under Ni-catalyzed conditions. In this process, for the first time, oxalic acid is used as an ex situ solid, bench stable, easy to handle and efficient CO surrogate in a DV-system for the carbonylative Sonogashira coupling reaction with vast substrate scope.
Collapse
Affiliation(s)
- Shaifali
- Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, H.P., India. and Academy of Scientific and Innovative Research (AcSIR), CSIR-IHBT, Palampur, India
| | - Shankar Ram
- Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, H.P., India. and Academy of Scientific and Innovative Research (AcSIR), CSIR-IHBT, Palampur, India
| | - Vandna Thakur
- Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, H.P., India. and Academy of Scientific and Innovative Research (AcSIR), CSIR-IHBT, Palampur, India
| | - Pralay Das
- Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, H.P., India. and Academy of Scientific and Innovative Research (AcSIR), CSIR-IHBT, Palampur, India
| |
Collapse
|
8
|
Donslund AS, Neumann KT, Corneliussen NP, Grove EK, Herbstritt D, Daasbjerg K, Skrydstrup T. Access to β‐Ketonitriles through Nickel‐Catalyzed Carbonylative Coupling of α‐Bromonitriles with Alkylzinc Reagents. Chemistry 2019; 25:9856-9860. [DOI: 10.1002/chem.201902206] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/04/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Aske S. Donslund
- Carbon Dioxide Activation Center (CADIAC)Department of Chemistry and the Interdisciplinary, Nanoscience Center (iNANO)Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Karoline T. Neumann
- Carbon Dioxide Activation Center (CADIAC)Department of Chemistry and the Interdisciplinary, Nanoscience Center (iNANO)Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Nicklas P. Corneliussen
- Carbon Dioxide Activation Center (CADIAC)Department of Chemistry and the Interdisciplinary, Nanoscience Center (iNANO)Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Ebbe K. Grove
- Carbon Dioxide Activation Center (CADIAC)Department of Chemistry and the Interdisciplinary, Nanoscience Center (iNANO)Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Domenique Herbstritt
- Carbon Dioxide Activation Center (CADIAC)Department of Chemistry and the Interdisciplinary, Nanoscience Center (iNANO)Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Kim Daasbjerg
- Carbon Dioxide Activation Center (CADIAC)Department of Chemistry and the Interdisciplinary, Nanoscience Center (iNANO)Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC)Department of Chemistry and the Interdisciplinary, Nanoscience Center (iNANO)Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
| |
Collapse
|
9
|
Shi R, Hu X. From Alkyl Halides to Ketones: Nickel‐Catalyzed Reductive Carbonylation Utilizing Ethyl Chloroformate as the Carbonyl Source. Angew Chem Int Ed Engl 2019; 58:7454-7458. [DOI: 10.1002/anie.201903330] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Indexed: 01/29/2023]
Affiliation(s)
- Renyi Shi
- Laboratory of Inorganic Synthesis and CatalysisInstitute of Chemical Sciences and EngineeringÉcole polytechnique fédérale de Lausanne (EPFL)ISIC-LSCI BCH 3305 Lausanne 1015 Switzerland
| | - Xile Hu
- Laboratory of Inorganic Synthesis and CatalysisInstitute of Chemical Sciences and EngineeringÉcole polytechnique fédérale de Lausanne (EPFL)ISIC-LSCI BCH 3305 Lausanne 1015 Switzerland
| |
Collapse
|
10
|
Shi R, Hu X. From Alkyl Halides to Ketones: Nickel‐Catalyzed Reductive Carbonylation Utilizing Ethyl Chloroformate as the Carbonyl Source. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903330] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Renyi Shi
- Laboratory of Inorganic Synthesis and CatalysisInstitute of Chemical Sciences and EngineeringÉcole polytechnique fédérale de Lausanne (EPFL)ISIC-LSCI BCH 3305 Lausanne 1015 Switzerland
| | - Xile Hu
- Laboratory of Inorganic Synthesis and CatalysisInstitute of Chemical Sciences and EngineeringÉcole polytechnique fédérale de Lausanne (EPFL)ISIC-LSCI BCH 3305 Lausanne 1015 Switzerland
| |
Collapse
|
11
|
Neumann KT, Donslund AS, Andersen TL, Nielsen DU, Skrydstrup T. Synthesis of Aliphatic Carboxamides Mediated by Nickel NN2
-Pincer Complexes and Adaptation to Carbon-Isotope Labeling. Chemistry 2018; 24:14946-14949. [DOI: 10.1002/chem.201804077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Karoline T. Neumann
- Carbon Dioxide Activation Center (CADIAC); Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO); Aarhus University.; Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Aske S. Donslund
- Carbon Dioxide Activation Center (CADIAC); Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO); Aarhus University.; Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Thomas L. Andersen
- Carbon Dioxide Activation Center (CADIAC); Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO); Aarhus University.; Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Dennis U. Nielsen
- Carbon Dioxide Activation Center (CADIAC); Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO); Aarhus University.; Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC); Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO); Aarhus University.; Gustav Wieds Vej 14 8000 Aarhus C Denmark
| |
Collapse
|
12
|
Ohashi M, Ishida N, Ando K, Hashimoto Y, Shigaki A, Kikushima K, Ogoshi S. CuI
-Catalyzed Pentafluoroethylation of Aryl Iodides in the Presence of Tetrafluoroethylene and Cesium Fluoride: Determining the Route to the Key Pentafluoroethyl CuI
Intermediate. Chemistry 2018; 24:9794-9798. [DOI: 10.1002/chem.201802415] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Masato Ohashi
- Department of Applied Chemistry; Faculty of Engineering; Osaka University; Suita Osaka 565-0871 Japan
| | - Naoyoshi Ishida
- Department of Applied Chemistry; Faculty of Engineering; Osaka University; Suita Osaka 565-0871 Japan
| | - Kota Ando
- Department of Applied Chemistry; Faculty of Engineering; Osaka University; Suita Osaka 565-0871 Japan
| | - Yu Hashimoto
- Department of Applied Chemistry; Faculty of Engineering; Osaka University; Suita Osaka 565-0871 Japan
| | - Anna Shigaki
- Department of Applied Chemistry; Faculty of Engineering; Osaka University; Suita Osaka 565-0871 Japan
| | - Kotaro Kikushima
- Department of Applied Chemistry; Faculty of Engineering; Osaka University; Suita Osaka 565-0871 Japan
| | - Sensuke Ogoshi
- Department of Applied Chemistry; Faculty of Engineering; Osaka University; Suita Osaka 565-0871 Japan
| |
Collapse
|
13
|
Sensuke Ogoshi. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/anie.201708270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
14
|
Andersen TL, Donslund AS, Neumann KT, Skrydstrup T. Carbonylative Coupling of Alkyl Zinc Reagents with Benzyl Bromides Catalyzed by a Nickel/NN
2
Pincer Ligand Complex. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201710089] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Thomas L. Andersen
- Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO)Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Aske S. Donslund
- Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO)Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Karoline T. Neumann
- Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO)Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO)Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
| |
Collapse
|
15
|
Sensuke Ogoshi. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Andersen TL, Donslund AS, Neumann KT, Skrydstrup T. Carbonylative Coupling of Alkyl Zinc Reagents with Benzyl Bromides Catalyzed by a Nickel/NN 2 Pincer Ligand Complex. Angew Chem Int Ed Engl 2017; 57:800-804. [PMID: 29193522 DOI: 10.1002/anie.201710089] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/07/2017] [Indexed: 12/22/2022]
Abstract
An efficient catalytic protocol for the three-component assembly of benzyl bromides, carbon monoxide, and alkyl zinc reagents to give benzyl alkyl ketones is described, and represents the first nickel-catalyzed carbonylative coupling of two sp3 -carbon fragments. The method, which relies on the application of nickel complexed with an NN2 -type pincer ligand and a controlled release of CO gas from a solid precursor, works well with a range of benzylic bromides. Mechanistic studies suggest the intermediacy of carbon-centered radicals.
Collapse
Affiliation(s)
- Thomas L Andersen
- Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Aske S Donslund
- Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Karoline T Neumann
- Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| |
Collapse
|
17
|
Buxton CS, Blakemore DC, Bower JF. Reductive Coupling of Acrylates with Ketones and Ketimines by a Nickel-Catalyzed Transfer-Hydrogenative Strategy. Angew Chem Int Ed Engl 2017; 56:13824-13828. [PMID: 28868751 PMCID: PMC5656909 DOI: 10.1002/anie.201707531] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Indexed: 12/17/2022]
Abstract
Nickel-catalyzed coupling of benzyl acrylates with activated ketones and imines provides γ-butyrolactones and lactams, respectively. The benzyl alcohol byproduct released during the lactonization/lactamization event is relayed to the next cycle where it serves as the reductant for C-C bond formation. This strategy represents a conceptually unique approach to transfer-hydrogenative C-C bond formation, thus providing examples of reductive heterocyclizations where hydrogen embedded within an alcohol leaving group facilitates turnover.
Collapse
Affiliation(s)
| | | | - John F. Bower
- School of ChemistryUniversity of BristolBristolBS8 1TSUK
| |
Collapse
|
18
|
Buxton CS, Blakemore DC, Bower JF. Reductive Coupling of Acrylates with Ketones and Ketimines by a Nickel-Catalyzed Transfer-Hydrogenative Strategy. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Craig S. Buxton
- School of Chemistry; University of Bristol; Bristol BS8 1TS UK
| | | | - John F. Bower
- School of Chemistry; University of Bristol; Bristol BS8 1TS UK
| |
Collapse
|
19
|
Britton J, Stubbs KA, Weiss GA, Raston CL. Vortex Fluidic Chemical Transformations. Chemistry 2017; 23:13270-13278. [PMID: 28597512 DOI: 10.1002/chem.201700888] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Indexed: 01/25/2023]
Abstract
Driving chemical transformations in dynamic thin films represents a rapidly thriving and diversifying research area. Dynamic thin films provide a number of benefits including large surface areas, high shearing rates, rapid heat and mass transfer, micromixing and fluidic pressure waves. Combinations of these effects provide an avant-garde style of conducting chemical reactions with surprising and unusual outcomes. The vortex fluidic device (VFD) has proved its capabilities in accelerating and increasing the efficiencies of numerous organic, materials and biochemical reactions. This Minireview surveys transformations that have benefited from VFD-mediated processing, and identifies concepts driving the effectiveness of vortex-based dynamic thin films.
Collapse
Affiliation(s)
- Joshua Britton
- Department of Chemistry, University of California, Irvine, CA, 92697-2025, USA.,Centre for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - Keith A Stubbs
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Gregory A Weiss
- Department of Chemistry, University of California, Irvine, CA, 92697-2025, USA
| | - Colin L Raston
- Centre for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| |
Collapse
|