1
|
Feng W, Chittò M, Xie W, Ren Q, Liu F, Kang X, Zhao D, Li G, Moriarty TF, Wang X. Poly(d-amino acid) Nanoparticles Target Staphylococcal Growth and Biofilm Disassembly by Interfering with Peptidoglycan Synthesis. ACS NANO 2024; 18:8017-8028. [PMID: 38456817 DOI: 10.1021/acsnano.3c10983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
d-Amino acids are signals for biofilm disassembly. However, unexpected metabolic pathways severely attenuate the utilization of d-amino acids in biofilm disassembly, resulting in unsatisfactory efficiency. Herein, three-dimensional poly(d-amino acid) nanoparticles (NPs), which possess the ability to block intracellular metabolism, are constructed with the aim of disassembling the biofilms. The obtained poly(α-N-acryloyl-d-phenylalanine)-block-poly(β-N-acryloyl-d-aminoalanine NPs (denoted as FA NPs) present α-amino groups and α-carboxyl groups of d-aminoalanine on their surface, which guarantees that FA NPs can effectively insert into bacterial peptidoglycan (PG) via the mediation of PG binding protein 4 (PBP4). Subsequently, the FA NPs trigger the detachment of amyloid-like fibers that connect to the PG and reduce the number of polysaccharides and proteins in extracellular polymeric substances (EPS). Finally, FA NPs damage the structural stability of EPS and lead to the disassembly of the biofilm. Based on this feature, FA NPs significantly enhance the killing efficacy of encapsulated sitafloxacin sesquihydrate (Sita) by facilitating the penetration of Sita within the biofilm, achieving complete elimination of Staphylococcal biofilm in mice. Therefore, this study strongly demonstrates that FA NPs can effectively improve biofilm disassembly efficacy and provide great potential for bacterial biofilm infection treatment.
Collapse
Affiliation(s)
- Wenli Feng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- AO Research Institute Davos, Davos 7270, Switzerland
- China-Japan Friendship Hospital, Beijing 100029, People's Republic of China
| | - Marco Chittò
- AO Research Institute Davos, Davos 7270, Switzerland
| | - Wensheng Xie
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Qun Ren
- The Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biointerfaces, EMPA, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Fang Liu
- China-Japan Friendship Hospital, Beijing 100029, People's Republic of China
| | - Xiaoxu Kang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Dongdong Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Guofeng Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | | | - Xing Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
2
|
Zheng Q, Chang PV. Shedding Light on Bacterial Physiology with Click Chemistry. Isr J Chem 2023; 63:e202200064. [PMID: 37841997 PMCID: PMC10569449 DOI: 10.1002/ijch.202200064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Indexed: 11/11/2022]
Abstract
Bacteria constitute a major lifeform on this planet and play numerous roles in ecology, physiology, and human disease. However, conventional methods to probe their activities are limited in their ability to visualize and identify their functions in these diverse settings. In the last two decades, the application of click chemistry to label these microbes has deepened our understanding of bacterial physiology. With the development of a plethora of chemical tools that target many biological molecules, it is possible to track these microorganisms in real-time and at unprecedented resolution. Here, we review click chemistry, including bioorthogonal reactions, and their applications in imaging bacterial glycans, lipids, proteins, and nucleic acids using chemical reporters. We also highlight significant advances that have enabled biological discoveries that have heretofore remained elusive.
Collapse
Affiliation(s)
- Qiuyu Zheng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| | - Pamela V Chang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853
- Cornell Center for Immunology, Cornell University, Ithaca, NY 14853
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY 14853
| |
Collapse
|
3
|
Zhang ZJ, Wang YC, Yang X, Hang HC. Chemical Reporters for Exploring Microbiology and Microbiota Mechanisms. Chembiochem 2019; 21:19-32. [PMID: 31730246 DOI: 10.1002/cbic.201900535] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/14/2019] [Indexed: 12/11/2022]
Abstract
The advances made in bioorthogonal chemistry and the development of chemical reporters have afforded new strategies to explore the targets and functions of specific metabolites in biology. These metabolite chemical reporters have been applied to diverse classes of bacteria including Gram-negative, Gram-positive, mycobacteria, and more complex microbiota communities. Herein we summarize the development and application of metabolite chemical reporters to study fundamental pathways in bacteria as well as microbiota mechanisms in health and disease.
Collapse
Affiliation(s)
- Zhenrun J Zhang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Yen-Chih Wang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Xinglin Yang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Howard C Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| |
Collapse
|
4
|
Hu F, Qi G, Kenry, Mao D, Zhou S, Wu M, Wu W, Liu B. Visualization and In Situ Ablation of Intracellular Bacterial Pathogens through Metabolic Labeling. Angew Chem Int Ed Engl 2019; 59:9288-9292. [DOI: 10.1002/anie.201910187] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Fang Hu
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Guobin Qi
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Kenry
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Duo Mao
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Shiwei Zhou
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Min Wu
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Wenbo Wu
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| |
Collapse
|
5
|
Hu F, Qi G, Kenry, Mao D, Zhou S, Wu M, Wu W, Liu B. Visualization and In Situ Ablation of Intracellular Bacterial Pathogens through Metabolic Labeling. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Fang Hu
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Guobin Qi
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Kenry
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Duo Mao
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Shiwei Zhou
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Min Wu
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Wenbo Wu
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| |
Collapse
|
6
|
Discovery of 2-aminothiazolyl berberine derivatives as effectively antibacterial agents toward clinically drug-resistant Gram-negative Acinetobacter baumanii. Eur J Med Chem 2018; 146:15-37. [DOI: 10.1016/j.ejmech.2018.01.038] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 01/01/2023]
|