1
|
Jäger C, Haase M, Koschorreck K, Urlacher VB, Deska J. Aerobic C-N Bond Formation through Enzymatic Nitroso-Ene-Type Reactions. Angew Chem Int Ed Engl 2023; 62:e202213671. [PMID: 36468873 PMCID: PMC10107922 DOI: 10.1002/anie.202213671] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
The biocatalytic oxidation of acylated hydroxylamines enables the direct and selective introduction of nitrogen functionalities by activation of allylic C-H bonds. Utilizing either laccases or an oxidase/peroxidase couple for the formal dehydrogenation of N-hydroxycarbamates and hydroxamic acids with air as the terminal oxidant, acylnitroso species are generated under particularly mild aqueous conditions. The reactive intermediates undergo C-N bond formation through an ene-type mechanism and provide high yields both in intramolecular and intermolecular enzymatic aminations. Investigations on different pathways of the two biocatalytic systems and labelling studies provide more insight into this unprecedented promiscuity of classical oxidoreductases as catalysts for nitroso-based transformations.
Collapse
Affiliation(s)
- Christina Jäger
- University of HelsinkiDepartment of ChemistryA.I. Virtasen aukio 100560HelsinkiFinland
- Aalto UniversityDepartment of ChemistryKemistintie 102150EspooFinland
| | - Mona Haase
- Aalto UniversityDepartment of ChemistryKemistintie 102150EspooFinland
- Heinrich-Heine-Universität DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Katja Koschorreck
- Heinrich-Heine-Universität DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Vlada B. Urlacher
- Heinrich-Heine-Universität DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Jan Deska
- University of HelsinkiDepartment of ChemistryA.I. Virtasen aukio 100560HelsinkiFinland
- Aalto UniversityDepartment of ChemistryKemistintie 102150EspooFinland
| |
Collapse
|
2
|
Zhai L, Tang Y, Zhang Y, Huang SH, Zhu L, Hong R. A Bridge to Alkaloid Synthesis. CHEM REC 2021; 22:e202100197. [PMID: 34473401 DOI: 10.1002/tcr.202100197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/23/2021] [Indexed: 11/07/2022]
Abstract
The construction of a structurally rigid architecture with chiral complexity, necessary to enhance the interaction with binding sites of drug targets, has been adapted as an intriguing approach in drug development. In the past few years, we have been interested in the synthesis of biologically significant and bridged alkaloids via novel synthetic methods and strategies based on recognition of the privileged pattern. Therefore, nitroso-ene and aza-Wacker cyclizations were elevated for the first time to construct bridged alkaloids, such as hosieine A, kopsone, melinonine-E and strychnoxanthine. Mechanistic investigations, including computational calculations for nitroso-ene reaction and deuterated experiments for aza-Wacker reaction, enable us to gain more insights into the chemical reactivity and selectivity of specific functional groups in developing viable synthetic methods.
Collapse
Affiliation(s)
- Li Zhai
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, PR China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 101419, PR China, CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry (CAS), 345 Lingling Road, Shanghai, 200032, PR China
| | - Ye Tang
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 101419, PR China, CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry (CAS), 345 Lingling Road, Shanghai, 200032, PR China
| | - Yan Zhang
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 101419, PR China, CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry (CAS), 345 Lingling Road, Shanghai, 200032, PR China
| | - Sha-Hua Huang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, PR China
| | - Lili Zhu
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 101419, PR China, CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry (CAS), 345 Lingling Road, Shanghai, 200032, PR China
| | - Ran Hong
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, PR China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 101419, PR China, CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry (CAS), 345 Lingling Road, Shanghai, 200032, PR China
| |
Collapse
|
3
|
Wu T, Tang W. Construction of Bridged Polycyclic Skeletons via Transition-Metal Catalyzed Carbon-Carbon Bond-Forming Reactions. Chemistry 2021; 27:3944-3956. [PMID: 32918298 DOI: 10.1002/chem.202003863] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/10/2020] [Indexed: 12/15/2022]
Abstract
Transition-metal catalysis has become one of most important methods for constructing molecules with diverse architectures. Bridged polycyclic skeletons are often considered one of most challenging structures in organic synthesis. This Minireview summarizes the recent progress on synthesis of bridged polycyclic skeletons by transition-metal-catalyzed carbon-carbon bond-forming reaction. Four main ring-forming strategies including connection via olefin or carbonyl functionality, enolate intermediacy, C-H functionality, and aryl functionality are detailed and some effective methods are discussed with particular emphasis on reaction design and mechanism.
Collapse
Affiliation(s)
- Ting Wu
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Wenjun Tang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China.,School of Chemistry and Materials Science Hangzhou Institute for, Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China
| |
Collapse
|
4
|
Steeds HG, Knowles JP, Yu WL, Richardson J, Cooper KG, Booker‐Milburn KI. Rapid Access to Azabicyclo[3.3.1]nonanes by a Tandem Diverted Tsuji-Trost Process. Chemistry 2020; 26:14330-14334. [PMID: 32812670 PMCID: PMC7702095 DOI: 10.1002/chem.202003762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Indexed: 12/14/2022]
Abstract
A three-step synthesis of the 2-azabicyclo[3.3.1]nonane ring system from simple pyrroles, employing a combined photochemical/palladium-catalysed approach is reported. Substrate scope is broad, allowing the incorporation of a wide range of functionality relevant to medicinal chemistry. Mechanistic studies demonstrate that the process occurs by acid-assisted C-N bond cleavage followed by β-hydride elimination to form a reactive diene, demonstrating that efficient control of what might be considered off-cycle reactions can result in productive tandem catalytic processes. This represents a short and versatile route to the biologically important morphan scaffold.
Collapse
Affiliation(s)
- Hannah G. Steeds
- School of ChemistryUniversity of BristolCantock' CloseBristolBS8 1TSUK
| | | | - Wai L. Yu
- School of ChemistryUniversity of BristolCantock' CloseBristolBS8 1TSUK
| | | | - Katie G. Cooper
- Pharmaceutical Technology & DevelopmentAstraZenecaMacclesfield CampusCheshireSK10 2NAUK
| | | |
Collapse
|
5
|
François B, Eberlin L, Berrée F, Whiting A, Carboni B. Generating Skeletal Diversity and Complexity from Boron-Substituted 1,3-Dienes and Enophiles. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Benjamin François
- Univ Rennes; CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226; 35000 Rennes France
| | - Ludovic Eberlin
- Univ Rennes; CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226; 35000 Rennes France
| | - Fabienne Berrée
- Univ Rennes; CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226; 35000 Rennes France
| | - Andrew Whiting
- Department of Chemistry; Durham University; Science Laboratories; South Road DH1 3LE Durham U.K
| | - Bertrand Carboni
- Univ Rennes; CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226; 35000 Rennes France
| |
Collapse
|
6
|
Xu Y, Sun Q, Tan T, Yang M, Yuan P, Wu S, Lu X, Hong X, Ye L. Organocatalytic Enantioselective Conia‐Ene‐Type Carbocyclization of Ynamide Cyclohexanones: Regiodivergent Synthesis of Morphans and Normorphans. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908495] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yin Xu
- State Key Laboratory of Physical Chemistry of Solid SurfacesKey Laboratory for Chemical Biology of Fujian Province, and College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| | - Qing Sun
- State Key Laboratory of Physical Chemistry of Solid SurfacesKey Laboratory for Theoretical and Computational Chemistry of Fujian Province, and College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| | - Tong‐De Tan
- State Key Laboratory of Physical Chemistry of Solid SurfacesKey Laboratory for Chemical Biology of Fujian Province, and College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| | - Ming‐Yang Yang
- State Key Laboratory of Physical Chemistry of Solid SurfacesKey Laboratory for Chemical Biology of Fujian Province, and College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| | - Peng Yuan
- State Key Laboratory of Physical Chemistry of Solid SurfacesKey Laboratory for Chemical Biology of Fujian Province, and College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| | - Shao‐Qi Wu
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid SurfacesKey Laboratory for Theoretical and Computational Chemistry of Fujian Province, and College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| | - Xin Hong
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Long‐Wu Ye
- State Key Laboratory of Physical Chemistry of Solid SurfacesKey Laboratory for Chemical Biology of Fujian Province, and College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
7
|
Xu Y, Sun Q, Tan TD, Yang MY, Yuan P, Wu SQ, Lu X, Hong X, Ye LW. Organocatalytic Enantioselective Conia-Ene-Type Carbocyclization of Ynamide Cyclohexanones: Regiodivergent Synthesis of Morphans and Normorphans. Angew Chem Int Ed Engl 2019; 58:16252-16259. [PMID: 31444882 DOI: 10.1002/anie.201908495] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/07/2019] [Indexed: 12/13/2022]
Abstract
Described herein is an organocatalytic enantioselective desymmetrizing cycloisomerization of arylsulfonyl-protected ynamide cyclohexanones, representing the first metal-free asymmetric Conia-ene-type carbocyclization. This method allows the highly efficient and atom-economical construction of a range of valuable morphans with wide substrate scope and excellent enantioselectivity (up to 97 % ee). In addition, such a cycloisomerization of alkylsulfonyl-protected ynamide cyclohexanones can lead to the divergent synthesis of normorphans as the main products with high enantioselectivity (up to 90 % ee). Moreover, theoretical calculations are employed to elucidate the origins of regioselectivity and enantioselectivity.
Collapse
Affiliation(s)
- Yin Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qing Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Theoretical and Computational Chemistry of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Tong-De Tan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ming-Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Peng Yuan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Shao-Qi Wu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Theoretical and Computational Chemistry of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xin Hong
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
8
|
Affiliation(s)
- Yu-Wen Huang
- Department of Chemistry and Biochemistry; Baylor University; One Bear Place 97348 Waco TX 76798 USA
| | - Ke Kong
- Department of Chemistry and Biochemistry; Baylor University; One Bear Place 97348 Waco TX 76798 USA
| | - John L. Wood
- Department of Chemistry and Biochemistry; Baylor University; One Bear Place 97348 Waco TX 76798 USA
| |
Collapse
|
9
|
Huang YW, Kong K, Wood JL. Total Synthesis of (+)- and (±)-Hosieine A. Angew Chem Int Ed Engl 2018; 57:7664-7667. [DOI: 10.1002/anie.201804076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Yu-Wen Huang
- Department of Chemistry and Biochemistry; Baylor University; One Bear Place 97348 Waco TX 76798 USA
| | - Ke Kong
- Department of Chemistry and Biochemistry; Baylor University; One Bear Place 97348 Waco TX 76798 USA
| | - John L. Wood
- Department of Chemistry and Biochemistry; Baylor University; One Bear Place 97348 Waco TX 76798 USA
| |
Collapse
|