1
|
Jiao K, Yan Q, Guo L, Qu Z, Cao S, Chen X, Li Q, Zhu Y, Li J, Wang L, Fan C, Wang F. Poly‐Adenine‐Based Spherical Nucleic Acids for Efficient Live‐Cell MicroRNA Capture. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kai Jiao
- Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Qinglong Yan
- Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Linjie Guo
- Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhibei Qu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China
| | - Shuting Cao
- Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiaoliang Chen
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China
| | - Qian Li
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China
| | - Ying Zhu
- Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
- Bioimaging Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory The Interdisciplinary Research Center Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 China
| | - Jiang Li
- Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China
- Bioimaging Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory The Interdisciplinary Research Center Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 China
| | - Lihua Wang
- Bioimaging Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory The Interdisciplinary Research Center Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China
- Institute of Molecular Medicine Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Fei Wang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
2
|
Jiao K, Yan Q, Guo L, Qu Z, Cao S, Chen X, Li Q, Zhu Y, Li J, Wang L, Fan C, Wang F. Poly-Adenine-Based Spherical Nucleic Acids for Efficient Live-Cell MicroRNA Capture. Angew Chem Int Ed Engl 2021; 60:14438-14445. [PMID: 33851770 DOI: 10.1002/anie.202017039] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/27/2021] [Indexed: 11/11/2022]
Abstract
Direct delivery of exogenous non-coding nucleic acids into living cells has attracted intense interest in biological applications. However, the cell entry efficiency and target capture ability remain to be improved. Herein, we report a method for compartmenting the nucleic acids on the surface of poly-adenine-based spherical nucleic acids (polyA-SNAs) for efficient capture of oncogenic microRNAs (miRNAs) in living cells. We find that polyA-SNAs exhibit high cell entry efficiency, which is insensitive to the configuration of the anti-miRNA sequences. By programming the length of polyAs, we precisely engineered the spatial configuration of the anti-miRNA sequences in polyA-SNAs. Compartmentalized polyA-SNAs bind to miRNAs with improved capture ability as compared to densely compacted SNAs. We further demonstrate that polyA-SNAs serve as high-efficacy miRNA sponges for capturing oncogenic miRNAs both in living cells and in mice. The efficient inhibition of miRNAs results in significant suppression of tumor growth.
Collapse
Affiliation(s)
- Kai Jiao
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qinglong Yan
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Linjie Guo
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhibei Qu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuting Cao
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoliang Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ying Zhu
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, The Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Jiang Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.,Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, The Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Lihua Wang
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, The Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.,Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Fei Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
3
|
Lee SM, Cheng Q, Yu X, Liu S, Johnson LT, Siegwart DJ. A Systematic Study of Unsaturation in Lipid Nanoparticles Leads to Improved mRNA Transfection In Vivo. Angew Chem Int Ed Engl 2021; 60:5848-5853. [PMID: 33305471 PMCID: PMC8100975 DOI: 10.1002/anie.202013927] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/07/2020] [Indexed: 12/27/2022]
Abstract
Lipid nanoparticles (LNPs) represent the leading concept for mRNA delivery. Unsaturated lipids play important roles in nature with potential for mRNA therapeutics, but are difficult to access through chemical synthesis. To systematically study the role of unsaturation, modular reactions were utilized to access a library of 91 amino lipids, enabled by the synthesis of unsaturated thiols. An ionizable lipid series (4A3) emerged from in vitro and in vivo screening, where the 4A3 core with a citronellol-based (Cit) periphery emerged as best. We studied the interaction between LNPs and a model endosomal membrane where 4A3-Cit demonstrated superior lipid fusion over saturated lipids, suggesting its unsaturated tail promotes endosomal escape. Furthermore, 4A3-Cit significantly improved mRNA delivery efficacy in vivo through Selective ORgan Targeting (SORT), resulting in 18-fold increased protein expression over parent LNPs. These findings provide insight into how lipid unsaturation promotes mRNA delivery and demonstrate how lipid mixing can enhance efficacy.
Collapse
Affiliation(s)
- Sang M Lee
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390-9038, USA
| | - Qiang Cheng
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390-9038, USA
| | - Xueliang Yu
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390-9038, USA
| | - Shuai Liu
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390-9038, USA
| | - Lindsay T Johnson
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390-9038, USA
| | - Daniel J Siegwart
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390-9038, USA
| |
Collapse
|
4
|
Lee SM, Cheng Q, Yu X, Liu S, Johnson LT, Siegwart DJ. A Systematic Study of Unsaturation in Lipid Nanoparticles Leads to Improved mRNA Transfection In Vivo. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sang M. Lee
- Department of Biochemistry University of Texas Southwestern Medical Center 5323 Harry Hines Blvd. Dallas TX 75390-9038 USA
| | - Qiang Cheng
- Department of Biochemistry University of Texas Southwestern Medical Center 5323 Harry Hines Blvd. Dallas TX 75390-9038 USA
| | - Xueliang Yu
- Department of Biochemistry University of Texas Southwestern Medical Center 5323 Harry Hines Blvd. Dallas TX 75390-9038 USA
| | - Shuai Liu
- Department of Biochemistry University of Texas Southwestern Medical Center 5323 Harry Hines Blvd. Dallas TX 75390-9038 USA
| | - Lindsay T. Johnson
- Department of Biochemistry University of Texas Southwestern Medical Center 5323 Harry Hines Blvd. Dallas TX 75390-9038 USA
| | - Daniel J. Siegwart
- Department of Biochemistry University of Texas Southwestern Medical Center 5323 Harry Hines Blvd. Dallas TX 75390-9038 USA
| |
Collapse
|
5
|
Affiliation(s)
- Yue Wang
- Australisches Institut für Bioingenieurwesen und Nanotechnologie Universität Queensland Brisbane QLD 4072 Australien
| | - Chengzhong Yu
- Australisches Institut für Bioingenieurwesen und Nanotechnologie Universität Queensland Brisbane QLD 4072 Australien
- Fakultät für Chemie und Molekulartechnik Pädagogische Universität Ostchina Shanghai 200241 P. R. China
| |
Collapse
|
6
|
Wang Y, Yu C. Emerging Concepts of Nanobiotechnology in mRNA Delivery. Angew Chem Int Ed Engl 2020; 59:23374-23385. [PMID: 32400110 DOI: 10.1002/anie.202003545] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/06/2020] [Indexed: 12/27/2022]
Abstract
Introducing mRNA into cells has attracted intense interest for diverse applications; however, success requires delivery solutions. Engineered nanomaterials have been applied as mRNA nanocarriers; their functions are designed mainly as delivery vehicles, but rarely in regulation of the protein translation. Recently, progress in nanobiotechnology has shifted the design principle of mRNA nanocarriers from simple delivery tools to translation modulators. Here, we review the emerging concepts of nanomaterials regulating mRNA translation and recent progress in mRNA delivery. Designer nanomaterials providing integrated functions for specific mRNA applications are also reviewed to provide insights for the design of next-generation nanomaterials to revolutionize mRNA technology.
Collapse
Affiliation(s)
- Yue Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.,School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
7
|
Hajj KA, Melamed JR, Chaudhary N, Lamson NG, Ball RL, Yerneni SS, Whitehead KA. A Potent Branched-Tail Lipid Nanoparticle Enables Multiplexed mRNA Delivery and Gene Editing In Vivo. NANO LETTERS 2020; 20:5167-5175. [PMID: 32496069 PMCID: PMC7781386 DOI: 10.1021/acs.nanolett.0c00596] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The clinical translation of messengerRNA (mRNA) drugs has been slowed by a shortage of delivery vehicles that potently and safely shuttle mRNA into target cells. Here, we describe the properties of a particularly potent branched-tail lipid nanoparticle that delivers mRNA to >80% of three major liver cell types. We characterize mRNA delivery spatially, temporally, and as a function of injection type. Following intravenous delivery, our lipid nanoparticle induced greater protein expression than two benchmark lipids, C12-200 and DLin-MC3-DMA, at an mRNA dose of 0.5 mg/kg. Lipid nanoparticles were sufficiently potent to codeliver three distinct mRNAs (firefly luciferase, mCherry, and erythropoietin) and, separately, Cas9 mRNA and single guide RNA (sgRNA) for proof-of-concept nonviral gene editing in mice. Furthermore, our branched-tail lipid nanoparticle was neither immunogenic nor toxic to the liver. Together, these results demonstrate the unique potential of this lipid material to improve the management of diseases rooted in liver dysfunction.
Collapse
Affiliation(s)
- Khalid A Hajj
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jilian R Melamed
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Namit Chaudhary
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Nicholas G Lamson
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Rebecca L Ball
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Saigopalakrishna S Yerneni
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Kathryn A Whitehead
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
8
|
New Members and Foreign Associates of the National Academy of Sciences 2019. Angew Chem Int Ed Engl 2019; 58:8625-8626. [PMID: 31148356 DOI: 10.1002/anie.201905912] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
9
|
|
10
|
He Y, Hong C, Li J, Howard MT, Li Y, Turvey ME, Uppu DSSM, Martin JR, Zhang K, Irvine DJ, Hammond PT. Synthetic Charge-Invertible Polymer for Rapid and Complete Implantation of Layer-by-Layer Microneedle Drug Films for Enhanced Transdermal Vaccination. ACS NANO 2018; 12:10272-10280. [PMID: 30272942 PMCID: PMC6501205 DOI: 10.1021/acsnano.8b05373] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The utility of layer-by-layer (LbL) coated microneedle (MN) skin patches for transdermal drug delivery has proven to be a promising approach, with advantages over hypodermal injection due to painless and easy self-administration. However, the long epidermal application time required for drug implantation by existing LbL MN strategies (15-90 min) can lead to potential medication noncompliance. Here, we developed a MN platform to shorten the application time in MN therapies based on a synthetic pH-induced charge-invertible polymer poly(2-(diisopropylamino) ethyl methacrylate- b-methacrylic acid) (PDM), requiring only 1 min skin insertion time to implant LbL films in vivo. Following MN-mediated delivery of 0.5 μg model antigen chicken ovalbumin (OVA) in the skin of mice, this system achieved sustained release over 3 days and led to an elevated immune response as demonstrated by significantly higher humoral immunity compared with OVA administration via conventional routes (subcutaneously and intramuscularly). Moreover, in an ex vivo experiment on human skin, we achieved efficient immune activation through MN-delivered LbL films, demonstrated by a rapid uptake of vaccine adjuvants by the antigen presenting cells. These features, rapid administration and the ability to elicit a robust immune response, can potentially enable a broad application of microneedle-based vaccination technologies.
Collapse
Affiliation(s)
- Yanpu He
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Celestine Hong
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Jiahe Li
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - MayLin T Howard
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Yingzhong Li
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Michelle E Turvey
- Infectious Diseases Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Singapore, Singapore
| | - Divakara SSM Uppu
- Infectious Diseases Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Singapore, Singapore
| | - John R Martin
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Ketian Zhang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, United States
| | - Paula T Hammond
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| |
Collapse
|