1
|
Vannoy KJ, Edwards MQ, Renault C, Dick JE. An Electrochemical Perspective on Reaction Acceleration in Microdroplets. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:149-171. [PMID: 38594942 DOI: 10.1146/annurev-anchem-061622-030919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Analytical techniques operating at the nanoscale introduce confinement as a tool at our disposal. This review delves into the phenomenon of accelerated reactivity within micro- and nanodroplets. A decade of accelerated reactivity observations was succeeded by several years of fundamental studies aimed at mechanistic enlightenment. Herein, we provide a brief historical context for rate enhancement in and around micro- and nanodroplets and summarize the mechanisms that have been proposed to contribute to such extraordinary reactivity. We highlight recent electrochemical reports that make use of restricted mass transfer to enhance electrochemical reactions and/or quantitatively measure reaction rates within droplet-confined electrochemical cells. A comprehensive approach to nanodroplet reactivity is paramount to understanding how nature takes advantage of these systems to provide life on Earth and, in turn, how to harness the full potential of such systems.
Collapse
Affiliation(s)
- Kathryn J Vannoy
- 1Department of Chemistry, Purdue University, West Lafayette, Indiana, USA;
| | | | - Christophe Renault
- 1Department of Chemistry, Purdue University, West Lafayette, Indiana, USA;
- 2Current Address: Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois, USA
| | - Jeffrey E Dick
- 1Department of Chemistry, Purdue University, West Lafayette, Indiana, USA;
- 3Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
2
|
Liang Q, Zhu C, Yang J. Water Charge Transfer Accelerates Criegee Intermediate Reaction with H 2O - Radical Anion at the Aqueous Interface. J Am Chem Soc 2023; 145:10159-10166. [PMID: 37011411 DOI: 10.1021/jacs.3c00734] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Criegee intermediates (CIs) are important carbonyl oxides that may react with atmospheric trace chemicals and impact the global climate. The CI reaction with water has been widely studied and is a main channel for trapping CIs in the troposphere. Previous experimental and computational reports have largely focused on reaction kinetic processes in various CI-water reactions. The molecular-level origin of CI's interfacial reactivity at the water microdroplet surface (e.g., as found in aerosols and clouds) is unclear. In this study, by employing the quantum mechanical/molecular mechanical (QM/MM) Born-Oppenheimer molecular dynamics with the local second-order Møller-Plesset perturbation theory, our computational results reveal a substantial water charge transfer up to ∼20% per water, which creates the surface H2O+/H2O- radical pairs to enhance the CH2OO and anti-CH3CHOO reactivity with water: the resulting strong CI-H2O- electrostatic attraction at the microdroplet surface facilitates the nucleophilic attack to the CI carbonyl by water, which may counteract the apolar hindrance of the substituent to accelerate the CI-water reaction. Our statistical analysis of the molecular dynamics trajectories further resolves a relatively long-lived bound CI(H2O-) intermediate state at the air/water interface, which has not been observed in gaseous CI reactions. This work provides insights into what may alter the oxidizing power of the troposphere by the next larger CIs than simple CH2OO and implicates a new perspective on the role of interfacial water charge transfer in accelerating molecular reactions at aqueous interfaces.
Collapse
Affiliation(s)
- Qiujiang Liang
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Chongqin Zhu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100190, People's Republic of China
| | - Jun Yang
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| |
Collapse
|
3
|
Chang YP, Devi Y, Chen CH. Micro-droplet Trapping and Manipulation: Understanding Aerosol Better for a Healthier Environment. Chem Asian J 2021; 16:1644-1660. [PMID: 33999498 DOI: 10.1002/asia.202100516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Indexed: 11/09/2022]
Abstract
Understanding the physicochemical properties and heterogeneous processes of aerosols is key not only to elucidate the impacts of aerosols on the atmosphere and humans but also to exploit their further applications, especially for a healthier environment. Experiments that allow for spatially control of single aerosol particles and investigations on the fundamental properties and heterogeneous chemistry at the single-particle level have flourished during the last few decades, and significant breakthroughs in recent years promise better control and novel applications aimed at resolving key issues in aerosol science. Here we propose graphene oxide (GO) aerosols as prototype aerosols containing polycyclic aromatic hydrocarbons, and GO can behave as two-dimensional surfactants which could modify the interfacial properties of aerosols. We describe the techniques of trapping single particles and furthermore the current status of the optical spectroscopy and chemistry of GO. The current applications of these single-particle trapping techniques are summarized and interesting future applications of GO aerosols are discussed.
Collapse
Affiliation(s)
- Yuan-Pin Chang
- Department of Chemistry, National Sun Yat-sen University, No. 70 Lien-hai Rd., Kaohsiung, 80424, Taiwan.,Aerosol Science Research Center, National Sun Yat-sen University, No. 70 Lien-hai Rd., Kaohsiung, 80424, Taiwan
| | - Yanita Devi
- Department of Chemistry, National Sun Yat-sen University, No. 70 Lien-hai Rd., Kaohsiung, 80424, Taiwan
| | - Chun-Hu Chen
- Department of Chemistry, National Sun Yat-sen University, No. 70 Lien-hai Rd., Kaohsiung, 80424, Taiwan
| |
Collapse
|
4
|
Zhao P, Gunawardena HP, Zhong X, Zare RN, Chen H. Microdroplet Ultrafast Reactions Speed Antibody Characterization. Anal Chem 2021; 93:3997-4005. [PMID: 33590747 DOI: 10.1021/acs.analchem.0c04974] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recently, microdroplet reactions have aroused much interest because the microdroplet provides a unique medium where organic reactions could be accelerated by a factor of 103 or more. However, microdroplet reactions of proteins have been rarely studied. We report the occurrence of multiple-step reactions of a large protein, specifically, the digestion, reduction, and deglycosylation of an intact antibody, which can take place in microseconds with high reaction yields in aqueous microdroplets at room temperature. As a result, fast structural characterization of a monoclonal antibody, essential for assessing its quality as a therapeutic drug, can be enabled. We found that the IgG1 antibody can be digested completely by the IdeS protease in aqueous microdroplets in 250 microseconds, a 7.5 million-fold improvement in speed in comparison to traditional digestion in bulk solution (>30 min). Strikingly, inclusion of the reductant tris(2-carboxyethyl)phosphine in the spray solution caused simultaneous antibody digestion and disulfide bond reduction. Digested and reduced antibody fragments were either collected or analyzed online by mass spectrometry. Further addition of PNGase F glycosylase into the spray solution led to antibody deglycosylation, thereby producing reduced and deglycosylated fragments of analytical importance. In addition, glycated fragments of IgG1 derived from glucose modification were identified rapidly with this ultrafast digestion/reduction technique. We suggest that microdroplets can serve as powerful microreactors for both exploring large-molecule reactions and speeding their structural analyses.
Collapse
Affiliation(s)
- Pengyi Zhao
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Harsha P Gunawardena
- Janssen Research & Development, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Xiaoqin Zhong
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Hao Chen
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| |
Collapse
|
5
|
Dyett BP, Zhang X. Accelerated Formation of H 2 Nanobubbles from a Surface Nanodroplet Reaction. ACS NANO 2020; 14:10944-10953. [PMID: 32692921 DOI: 10.1021/acsnano.0c03059] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The compartmentalization of chemical reactions within droplets has advantages in low costs, reduced consumption of reagents, and increased throughput. Reactions in small droplets have also been shown to greatly accelerate the rate of many chemical reactions. The accelerated growth rate of nanobubbles from nanodroplet reactions is demonstrated in this work. The gaseous products from the reaction at the nanodroplet surface promoted nucleation of hydrogen nanobubbles within multiple organic liquid nanodroplets. The nanobubbles were confined within the droplets and selectively grew and collapsed at the droplet perimeter, as visualized by microscopy with high spatial and temporal resolutions. The growth rate of the bubbles was significantly accelerated within small droplets and scaled inversely with droplet radius. The acceleration was attributed to confinement from the droplet volume and effect from the surface area on the interfacial chemical reaction for gas production. The results of this study provide further understanding for applications in droplet enhanced production of nanobubbles and the on-demand liberation of hydrogen.
Collapse
Affiliation(s)
- Brendan P Dyett
- School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Xuehua Zhang
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton T6G1H9, Alberta, Canada
| |
Collapse
|
6
|
Accelerating Electrochemical Reactions in a Voltage‐Controlled Interfacial Microreactor. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
7
|
Cheng H, Tang S, Yang T, Xu S, Yan X. Accelerating Electrochemical Reactions in a Voltage-Controlled Interfacial Microreactor. Angew Chem Int Ed Engl 2020; 59:19862-19867. [PMID: 32725670 DOI: 10.1002/anie.202007736] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Indexed: 11/10/2022]
Abstract
Microdroplet chemistry is attracting increasing attention for accelerated reactions at the solution-air interface. We report herein a voltage-controlled interfacial microreactor that enables acceleration of electrochemical reactions which are not observed in bulk or conventional electrochemical cells. The microreactor is formed at the interface of the Taylor cone in an electrospray emitter with a large orifice, thus allowing continuous contact of the electrode and the reactants at/near the interface. As a proof-of-concept, electrooxidative C-H/N-H coupling and electrooxidation of benzyl alcohol were shown to be accelerated by more than an order of magnitude as compared to the corresponding bulk reactions. The new electrochemical microreactor has unique features that allow i) voltage-controlled acceleration of electrochemical reactions by voltage-dependent formation of the interfacial microreactor; ii) "reversible" electrochemical derivatization; and iii) in situ mechanistic study and capture of key radical intermediates when coupled with mass spectrometry.
Collapse
Affiliation(s)
- Heyong Cheng
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, TX, 77845, USA.,College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Shuli Tang
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, TX, 77845, USA
| | - Tingyuan Yang
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, TX, 77845, USA
| | - Shiqing Xu
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, TX, 77845, USA
| | - Xin Yan
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, TX, 77845, USA
| |
Collapse
|
8
|
Li Z, Kiyama A, Zeng H, Lohse D, Zhang X. Speeding up biphasic reactions with surface nanodroplets. LAB ON A CHIP 2020; 20:2965-2974. [PMID: 32780079 DOI: 10.1039/d0lc00571a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Biphasic chemical reactions compartmentalized in small droplets offer advantages, such as streamlined procedures for chemical analysis, enhanced chemical reaction efficiency and high specificity of conversion. In this work, we experimentally and theoretically investigate the rate for biphasic chemical reactions between acidic nanodroplets on a substrate surface and basic reactants in a surrounding bulk flow. The reaction rate is measured by droplet shrinkage as the product is removed from the droplets by the flow. In our experiments, we determine the dependence of the reaction rate on the flow rate and the solution concentration. The theoretical analysis predicts that the life time τ of the droplets scales with Peclet number Pe and the reactant concentration in the bulk flow cre,bulk as τ∝ Pe-3/2cre,bulk-1, in good agreement with our experimental results. Furthermore, we found that the product from the reaction on an upstream surface can postpone the droplet reaction on a downstream surface, possibly due to the adsorption of interface-active products on the droplets in the downstream. The time of the delay decreases with increasing Pe of the flow and also with increasing reactant concentration in the flow, following the scaling same as that of the reaction rate with these two parameters. Our findings provide insight for the ultimate aim to enhance droplet reactions under flow conditions.
Collapse
Affiliation(s)
- Zhengxin Li
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | | | | | | | | |
Collapse
|
9
|
Kitanosono T, Kobayashi S. Reactions in Water Involving the “On‐Water” Mechanism. Chemistry 2020; 26:9408-9429. [DOI: 10.1002/chem.201905482] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/08/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Taku Kitanosono
- Department of ChemistrySchool of ScienceThe University of Tokyo Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Shū Kobayashi
- Department of ChemistrySchool of ScienceThe University of Tokyo Hongo Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
10
|
Gridnev ID, Zherebker A, Kostyukevich Y, Nikolaev E. Methylene Group Transfer in Carbonyl Compounds Discovered in silico and Detected Experimentally. Chemphyschem 2019; 20:361-365. [PMID: 30523648 DOI: 10.1002/cphc.201800945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/04/2018] [Indexed: 11/10/2022]
Abstract
A previously unknown transformation of aldehydes, ketones, and carboxylic acid derivatives leads to the formation of substituted oxiranes, aziridines, and azirines as shown by DFT and MP2 computations. Formations of 2,2-dimethyloxirane-d8 from acetone-d6 , phenylazirine-d2 from benzonitrile and 2-methyl-2-(4-hydroxyphenyl)-oxirane from 4-hydroxyacetophenone were detected experimentally by electrospray ionization mass-spectrometry with a heated desolvating capillary. This reaction is a truly concerted process characterized by high activation barriers (activation enthalpies 320-480 kJ mol-1 ).
Collapse
Affiliation(s)
- Ilya D Gridnev
- Graduate School of Science, Tohoku University Aramaki Aza Aoba 6-3, Aoba-ku, Sendai, 9808578, Japan
| | - Alexander Zherebker
- Center of Life Science, Skolkovo institute of Science and technology, 3 Nobelya str., Moscow, 121205, Russia
| | - Yury Kostyukevich
- Center of Life Science, Skolkovo institute of Science and technology, 3 Nobelya str., Moscow, 121205, Russia
| | - Eugene Nikolaev
- Center of Life Science, Skolkovo institute of Science and technology, 3 Nobelya str., Moscow, 121205, Russia
| |
Collapse
|