1
|
Qin S, Zhao HY, Luo XY, Wang F, Liu J, Ding Y, Hu Y. Photothermally Reinforced Nanozyme Remodeling Tumor Microenvironment of Redox and Metabolic Homeostasis to Enhance Ferroptosis in Tumor Therapy. ACS NANO 2024; 18:32235-32254. [PMID: 39499796 DOI: 10.1021/acsnano.4c13087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The acidity and high GSH level in the tumor microenvironment (TME) greatly limit the antitumor activity of nanozymes. Thus, enhancing nanozymes' activity is fundamentally challenging in tumor therapy. Although the combination of photothermal therapy (PTT) and nanozymes can enhance the catalytic activity, cancer cells will overexpress heat shock proteins (HSPs) at high temperature, aggravating the heat resistance of tumor cells, which in turn compromises the outcome of chemodynamic therapy. Herein, we propose an iron-doped metal-organic framework nanozyme (IB@Fe-ZIF8@PDFA) that can be activated under the weak acidity and high level of GSH, demonstrating the activities of GSH oxidation (GSH-OXD), peroxidase (POD), and NADH oxidase (NADH-OXD). Under laser irradiation, it displays photothermal-enhanced multienzyme activities to simultaneously eliminate tumors and inhibit tumor metastasis. While consuming endogenous GSH, IB@Fe-ZIF8@PDFA promotes the decomposition of H2O2 into ·OH, enhancing ferroptosis in tumor cells. Surprisingly, IB@Fe-ZIF8@PDFA nanozyme can oxide NADH and subsequently limit the ATP supply, reducing the expression of HSPs and significantly weakening the heat resistance of tumor cells during PTT. Meanwhile, H2O2 is generated during this procedure, which can endogenously replenish the consumed H2O2. Thus, this IB@Fe-ZIF8@PDFA nanozyme constitutes a self-cascading platform to consume GSH and NADH, endogenously replenish the H2O2 and continuously generate ·OH to facilitate ferroptosis by disrupting the redox and metabolic homeostasis in tumor cells, achieving tumor elimination and tumor metastasis inhibition.
Collapse
Affiliation(s)
- Shuheng Qin
- College of Engineering and Applied Sciences, MOE Key Laboratory of High Performance Polymer Materials & Technology, Nanjing University, Nanjing 210033, China
| | - Hui-Yue Zhao
- College of Engineering and Applied Sciences, MOE Key Laboratory of High Performance Polymer Materials & Technology, Nanjing University, Nanjing 210033, China
| | - Xing-Yu Luo
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210093, China
| | - Fei Wang
- College of Engineering and Applied Sciences, MOE Key Laboratory of High Performance Polymer Materials & Technology, Nanjing University, Nanjing 210033, China
| | - Jun Liu
- Department of Laboratory Medicine, Wuxi No. 5 People's Hospital Affiliated Jiangnan University, Wuxi, Jiangsu 214005, China
| | - Yin Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210033, China
| | - Yong Hu
- College of Engineering and Applied Sciences, MOE Key Laboratory of High Performance Polymer Materials & Technology, Nanjing University, Nanjing 210033, China
| |
Collapse
|
2
|
Fazel F, Doost JS, Raj S, Boodhoo N, Karimi K, Sharif S. The mRNA vaccine platform for veterinary species. Vet Immunol Immunopathol 2024; 274:110803. [PMID: 39003921 DOI: 10.1016/j.vetimm.2024.110803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
Vaccination has proven to be an effective means of controlling pathogens in animals. Since the introduction of veterinary vaccines in the 19th century, several generations of vaccines have been introduced. These vaccines have had a positive impact on global animal health and production. Despite, the success of veterinary vaccines, there are still some pathogens for which there are no effective vaccines available, such as African swine fever. Further, animal health is under the constant threat of emerging and re-emerging pathogens, some of which are zoonotic and can pose a threat to human health. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has highlighted the need for new vaccine platforms that are safe and efficacious, but also importantly, are adaptable and can be modified rapidly to match the circulating pathogens. mRNA vaccines have been shown to be an effective vaccine platform against various viral and bacterial pathogens. This review will cover some of the recent advances in the field of mRNA vaccines for veterinary species. Moreover, various mRNA vaccines and their delivery methods, as well as their reported efficacy, will be discussed. Current limitations and future prospects of this vaccine platform in veterinary medicine will also be discussed.
Collapse
Affiliation(s)
- Fatemeh Fazel
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Janan Shoja Doost
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Sugandha Raj
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Nitish Boodhoo
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Khalil Karimi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
3
|
Wu X, Zhou Z, Li K, Liu S. Nanomaterials-Induced Redox Imbalance: Challenged and Opportunities for Nanomaterials in Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308632. [PMID: 38380505 PMCID: PMC11040387 DOI: 10.1002/advs.202308632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/24/2024] [Indexed: 02/22/2024]
Abstract
Cancer cells typically display redox imbalance compared with normal cells due to increased metabolic rate, accumulated mitochondrial dysfunction, elevated cell signaling, and accelerated peroxisomal activities. This redox imbalance may regulate gene expression, alter protein stability, and modulate existing cellular programs, resulting in inefficient treatment modalities. Therapeutic strategies targeting intra- or extracellular redox states of cancer cells at varying state of progression may trigger programmed cell death if exceeded a certain threshold, enabling therapeutic selectivity and overcoming cancer resistance to radiotherapy and chemotherapy. Nanotechnology provides new opportunities for modulating redox state in cancer cells due to their excellent designability and high reactivity. Various nanomaterials are widely researched to enhance highly reactive substances (free radicals) production, disrupt the endogenous antioxidant defense systems, or both. Here, the physiological features of redox imbalance in cancer cells are described and the challenges in modulating redox state in cancer cells are illustrated. Then, nanomaterials that regulate redox imbalance are classified and elaborated upon based on their ability to target redox regulations. Finally, the future perspectives in this field are proposed. It is hoped this review provides guidance for the design of nanomaterials-based approaches involving modulating intra- or extracellular redox states for cancer therapy, especially for cancers resistant to radiotherapy or chemotherapy, etc.
Collapse
Affiliation(s)
- Xumeng Wu
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin150006China
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
| | - Ziqi Zhou
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| | - Kai Li
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| | - Shaoqin Liu
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin150006China
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| |
Collapse
|
4
|
Lei J, Qi S, Yu X, Gao X, Yang K, Zhang X, Cheng M, Bai B, Feng Y, Lu M, Wang Y, Li H, Yu G. Development of Mannosylated Lipid Nanoparticles for mRNA Cancer Vaccine with High Antigen Presentation Efficiency and Immunomodulatory Capability. Angew Chem Int Ed Engl 2024; 63:e202318515. [PMID: 38320193 DOI: 10.1002/anie.202318515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 02/08/2024]
Abstract
Insufficient accumulation of lipid nanoparticles (LNPs)-based mRNA vaccines in antigen presenting cells remains a key barrier to eliciting potent antitumor immune responses. Herein, we develop dendritic cells (DCs) targeting LNPs by taking advantage of mannose receptor-mediated endocytosis. Efficient delivery of mRNA to DCs is achieved in vitro and in vivo utilizing the sweet LNPs (STLNPs-Man). Intramuscular injection of mRNA vaccine (STLNPs-Man@mRNAOVA ) results in a four-fold higher uptake by DCs in comparison with commercially used LNPs. Benefiting from its DCs targeting ability, STLNPs-Man@mRNAOVA significantly promotes the antitumor performances, showing a comparable therapeutic efficacy by using one-fifth of the injection dosage as the vaccine prepared from normal LNPs, thus remarkably avoiding the side effects brought by conventional mRNA vaccines. More intriguingly, STLNPs-Man@mRNAOVA exhibits the ability to downregulate the expression of cytotoxic T-lymphocyte-associated protein 4 on T cells due to the blockade of CD206/CD45 axis, showing brilliant potentials in promoting antitumor efficacy combined with immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Jiaqi Lei
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Shaolong Qi
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Xinyang Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Xiaomin Gao
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Kai Yang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Xueyan Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Meiqi Cheng
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Bing Bai
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Yunxuan Feng
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Meixin Lu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Yangfan Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Hongjian Li
- School of Medicine, Tsinghua University, 100084, Beijing, P. R. China
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
- School of Medicine, Tsinghua University, 100084, Beijing, P. R. China
| |
Collapse
|
5
|
Da J, Di X, Xie Y, Li J, Zhang L, Liu Y. Recent advances in nanomedicine for metabolism-targeted cancer therapy. Chem Commun (Camb) 2024; 60:2442-2461. [PMID: 38321983 DOI: 10.1039/d3cc05858a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Metabolism denotes the sum of biochemical reactions that maintain cellular function. Different from most normal differentiated cells, cancer cells adopt altered metabolic pathways to support malignant properties. Typically, almost all cancer cells need a large number of proteins, lipids, nucleotides, and energy in the form of ATP to support rapid division. Therefore, targeting tumour metabolism has been suggested as a generic and effective therapy strategy. With the rapid development of nanotechnology, nanomedicine promises to have a revolutionary impact on clinical cancer therapy due to many merits such as targeting, improved bioavailability, controllable drug release, and potentially personalized treatment compared to conventional drugs. This review comprehensively elucidates recent advances of nanomedicine in targeting important metabolites such as glucose, glutamine, lactate, cholesterol, and nucleotide for effective cancer therapy. Furthermore, the challenges and future development in this area are also discussed.
Collapse
Affiliation(s)
- Jun Da
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
| | - XinJia Di
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
| | - YuQi Xie
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
| | - JiLi Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
| | - LiLi Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
| | - YanLan Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
| |
Collapse
|
6
|
Asif K, Adeel M, Mahbubur Rahman M, Bartoletti M, Brezar SK, Cemazar M, Canzonieri V, Rizzolio F, Caligiuri I. Copper nitroprusside: An innovative approach for targeted cancer therapy via ROS modulation. Biomed Pharmacother 2024; 171:116017. [PMID: 38194739 DOI: 10.1016/j.biopha.2023.116017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024] Open
Abstract
The clinical application of nanomaterials for chemodynamic therapy (CDT), which generate multiple reactive oxygen species (ROS), presents significant challenges. These challenges arise due to insufficient levels of endogenous hydrogen peroxide and catalytic ions necessary to initiate Fenton reactions. As a result, sophisticated additional delivery systems are required. In this study, a novel bimetallic copper (II) pentacyanonitrosylferrate (Cu(II)NP, Cu[Fe(CN) 5 NO]) material was developed to address these limitations. This material functions as a multiple ROS generator at tumoral sites by self-inducing hydrogen peroxide and producing peroxynitrite (ONOO-) species. The research findings demonstrate that this material exhibits low toxicity towards normal liver organoids, yet shows potent antitumoral effects on High Grade Serous Ovarian Cancer (HGSOC) organoid patients, regardless of platinum resistance. Significantly, this research introduces a promising therapeutic opportunity by proposing a single system capable of replacing the need for H2O2, additional catalysts, and NO-based delivery systems. This innovative system exhibits remarkable multiple therapeutic mechanisms, paving the way for potential advancements in clinical treatments.
Collapse
Affiliation(s)
- Kanwal Asif
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081 Aviano, Italy; Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30172 Venice, Italy
| | - Muhammad Adeel
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081 Aviano, Italy; Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30172 Venice, Italy.
| | - Md Mahbubur Rahman
- Department of Applied Chemistry, Konkuk University, Chungju 27478, South Korea
| | - Michele Bartoletti
- Department of Medicine (DAME), University of Udine, Udine, Italy; Unit of Medical Oncology and Cancer Prevention, Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano (PN), Italy
| | - Simona Kranjc Brezar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081 Aviano, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081 Aviano, Italy; Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30172 Venice, Italy.
| | - Isabella Caligiuri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081 Aviano, Italy
| |
Collapse
|
7
|
Fazel F, Matsuyama-Kato A, Alizadeh M, Boodhoo N, Sharif S. Efficacy and tolerability of an mRNA vaccine expressing gB and pp38 antigens of Marek's disease virus in chickens. Virology 2024; 590:109970. [PMID: 38134535 DOI: 10.1016/j.virol.2023.109970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/24/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Marek's disease is a contagious proliferative disease of chickens caused by an alphaherpesvirus called Marek's disease virus. A bivalent mRNA vaccine encoding MDV's glycoprotein-B and phosphoprotein-38 antigens was synthesized and encapsulated in lipid nanoparticles. Tumor incidence, lesion score, organ weight indices, MDV genome load and cytokine expression were used to evaluate protection and immunostimulatory effects of the tested mRNA vaccine after two challenge trials. Results from the first trial showed decreased tumor incidence and a reduction in average lesion scores in chickens that received the booster dose. The second trial demonstrated that vaccination with the higher dose of the vaccine (10 μg) significantly decreased tumor incidence, average lesion scores, bursal atrophy, and MDV load in feather tips when compared to the controls. Changes in expression of type I and II interferons suggested a possible role for these cytokines in initiation and maintenance of the vaccine-originated immune responses.
Collapse
Affiliation(s)
- Fatemeh Fazel
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Ayumi Matsuyama-Kato
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Mohammadali Alizadeh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Nitish Boodhoo
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
8
|
Jin X, Zhao H, Chao Z, Wang X, Zhang Q, Ju H, Liu Y. Self-assembled Cupric Oxide Nanoclusters for Highly efficient chemodynamic therapy. Chem Asian J 2022; 17:e202200296. [PMID: 35713338 DOI: 10.1002/asia.202200296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/04/2022] [Indexed: 11/11/2022]
Abstract
Chemodynamic therapy (CDT) based on Fenton and Fenton-like reactions induces cancer cell killing via in situ catalyzing H2 O2 and generating highly oxidative hydroxyl radicals (⋅OH) in tumor sites. Their application is not limited by tumor grown depth or hypoxic microenvironment. However, the reaction efficiency is still hampered due to the structure of catalytic agents and the requirement for low pH environment. Here, we design a porous CuO nanocluster (CuO NC) through self-assembly of oleylamine stabilized CuO NPs (OAm-CuO NPs), and functionalize it with folic acid (CuO NC-FA) for specific tumor cell targeting. It can catalyze H2 O2 with high efficiency in nearly neutral environment. Besides, the porous structure of CuO NC also helps the diffusion of H2 O2 to the interior of nanocluster to further improve Fenton-like reaction efficiency. The convenient synthesis of CuO NC-FA with good Fenton-like reaction efficiency at neutral environment demonstrates good chemodynamic therapy effect.
Collapse
Affiliation(s)
- Xinyu Jin
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R China
| | - Hongxia Zhao
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R China
| | - Zhicong Chao
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R China
| | - Xiaofeng Wang
- Department of Urology Affiliated Drum Tower Hospital, Medical School of Nanjing University Institute of Urology, Nanjing University, Nanjing, 210008, P. R. China
| | - Qing Zhang
- Department of Urology Affiliated Drum Tower Hospital, Medical School of Nanjing University Institute of Urology, Nanjing University, Nanjing, 210008, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R China
| | - Ying Liu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R China.,Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
9
|
Liu C, Chen Y, Zhao J, Wang Y, Shao Y, Gu Z, Li L, Zhao Y. Self-Assembly of Copper-DNAzyme Nanohybrids for Dual-Catalytic Tumor Therapy. Angew Chem Int Ed Engl 2021; 60:14324-14328. [PMID: 33822451 DOI: 10.1002/anie.202101744] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/23/2021] [Indexed: 12/15/2022]
Abstract
Despite the great efforts of using DNAzyme for gene therapy, its clinical success is limited by the lack of simple delivery systems and limited anticancer efficacy. Here, we develop a simple approach for the synthesis of hybrid nanostructures that exclusively consist of DNAzyme and Cu2+ with ultra-high loading capacity. The Cu-DNAzyme nanohybrids allow to effectively co-deliver DNAzyme and Cu2+ into cancer cells for combinational catalytic therapy. The released Cu2+ can be reduced to Cu+ by glutathione and then catalyze endogenous H2 O2 to form cytotoxic hydroxyl radicals for chemodynamic therapy (CDT), while the 10-23 DNAzyme enables the catalytic cleavage of VEGFR2 mRNA and activates gene silencing for gene therapy. We demonstrate that the system can efficiently accumulate in the tumor and exhibit amplified cascade antitumor effects with negligible systemic toxicity. Our work paves an extremely simple way to integrate DNAzyme with CDT for the dual-catalytic tumor treatment.
Collapse
Affiliation(s)
- Congzhi Liu
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China.,CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yaoxuan Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Yulei Shao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
10
|
Liu C, Chen Y, Zhao J, Wang Y, Shao Y, Gu Z, Li L, Zhao Y. Self‐Assembly of Copper–DNAzyme Nanohybrids for Dual‐Catalytic Tumor Therapy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101744] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Congzhi Liu
- Department of Chemistry School of Science Tianjin University Tianjin 300072 China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
| | - Yaoxuan Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Jian Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Yong Wang
- Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Yulei Shao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
11
|
Meng Y, Zhang D, Sun Y, Dai Z, Zhang T, Yu D, Zhang G, Zheng X. Core-shell FePt-cube@covalent organic polymer nanocomposites: a multifunctional nanocatalytic agent for primary and metastatic tumor treatment. J Mater Chem B 2021; 8:11021-11032. [PMID: 33191409 DOI: 10.1039/d0tb01981j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Metastasis and spread are currently the main factors leading to high mortality of cancer, so developing a synergetic antitumor strategy with high specificity and hypotoxicity is in urgent demand. Based on the design concept of "nanocatalytic medicine", multifunctional nanotherapeutic agent FePt@COP-FA nanocomposites (FPCF NCs) are developed for cancer treatment. Specifically, in the tumor microenvironment (TME), FePt could catalyze intracellular over-expressed H2O2 to generate highly active hydroxyl radicals (˙OH), which could not only induce the apoptosis of tumor cells, but also activate the "ferroptosis" pathway resulting in the lipid peroxide accumulation and ferroptotic cell death. Moreover, owing to the excellent photothermal effect, the FPCF NCs could effectively ablate primary tumors under near-infrared (NIR) laser irradiation and produce numerous tumor-associated antigens in situ. With the assistance of a checkpoint blockade inhibitor, anti-CTLA4 antibody, the body's specific immune response would be initiated to inhibit the growth of metastatic tumors. In particular, such synergistic therapeutics could produce an effective immunological memory effect, which could prevent tumor metastasis and recurrence again. In summary, the FPCF NC is an effective multifunctional antitumor therapeutic agent for nanocatalytic/photothermal/checkpoint blockade combination therapy, which exhibits great potential in nanocatalytic anticancer therapeutic applications.
Collapse
Affiliation(s)
- Yanfei Meng
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi 276000, Shandong, P. R. China. and School of Chemistry & Chemical Engineering, Linyi University, Linyi 276000, Shandong, P. R. China
| | - Dongsheng Zhang
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi 276000, Shandong, P. R. China.
| | - Yunqiang Sun
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi 276000, Shandong, P. R. China. and School of Chemistry & Chemical Engineering, Linyi University, Linyi 276000, Shandong, P. R. China
| | - Zhichao Dai
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi 276000, Shandong, P. R. China. and School of Chemistry & Chemical Engineering, Linyi University, Linyi 276000, Shandong, P. R. China
| | - Tiantian Zhang
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi 276000, Shandong, P. R. China.
| | - Dexin Yu
- Radiology Departments, Qilu Hospital of Shandong University, Jinan, Shandong 250000, China
| | - Gaorui Zhang
- Radiology Departments, Qilu Hospital of Shandong University, Jinan, Shandong 250000, China
| | - Xiuwen Zheng
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi 276000, Shandong, P. R. China. and School of Chemistry & Chemical Engineering, Linyi University, Linyi 276000, Shandong, P. R. China
| |
Collapse
|
12
|
Shi L, Wang Y, Zhang C, Zhao Y, Lu C, Yin B, Yang Y, Gong X, Teng L, Liu Y, Zhang X, Song G. An Acidity‐Unlocked Magnetic Nanoplatform Enables Self‐Boosting ROS Generation through Upregulation of Lactate for Imaging‐Guided Highly Specific Chemodynamic Therapy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014415] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Linan Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Youjuan Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Cheng Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Yan Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Chang Lu
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Baoli Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Yue Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Xiangyang Gong
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Lili Teng
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Yanlan Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Xiaobing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| |
Collapse
|
13
|
Shi L, Wang Y, Zhang C, Zhao Y, Lu C, Yin B, Yang Y, Gong X, Teng L, Liu Y, Zhang X, Song G. An Acidity‐Unlocked Magnetic Nanoplatform Enables Self‐Boosting ROS Generation through Upregulation of Lactate for Imaging‐Guided Highly Specific Chemodynamic Therapy. Angew Chem Int Ed Engl 2021; 60:9562-9572. [DOI: 10.1002/anie.202014415] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/14/2021] [Indexed: 12/24/2022]
Affiliation(s)
- Linan Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Youjuan Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Cheng Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Yan Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Chang Lu
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Baoli Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Yue Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Xiangyang Gong
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Lili Teng
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Yanlan Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Xiaobing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| |
Collapse
|
14
|
Zhang C, Wang X, Du J, Gu Z, Zhao Y. Reactive Oxygen Species-Regulating Strategies Based on Nanomaterials for Disease Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002797. [PMID: 33552863 PMCID: PMC7856897 DOI: 10.1002/advs.202002797] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/22/2020] [Indexed: 05/05/2023]
Abstract
Reactive oxygen species (ROS) play an essential role in physiological and pathological processes. Studies on the regulation of ROS for disease treatments have caused wide concern, mainly involving the topics in ROS-regulating therapy such as antioxidant therapy triggered by ROS scavengers and ROS-induced toxic therapy mediated by ROS-elevation agents. Benefiting from the remarkable advances of nanotechnology, a large number of nanomaterials with the ROS-regulating ability are developed to seek new and effective ROS-related nanotherapeutic modalities or nanomedicines. Although considerable achievements have been made in ROS-based nanomedicines for disease treatments, some fundamental but key questions such as the rational design principle for ROS-related nanomaterials are held in low regard. Here, the design principle can serve as the initial framework for scientists and technicians to design and optimize the ROS-regulating nanomedicines, thereby minimizing the gap of nanomedicines for biomedical application during the design stage. Herein, an overview of the current progress of ROS-associated nanomedicines in disease treatments is summarized. And then, by particularly addressing these known strategies in ROS-associated therapy, several fundamental and key principles for the design of ROS-associated nanomedicines are presented. Finally, future perspectives are also discussed in depth for the development of ROS-associated nanomedicines.
Collapse
Affiliation(s)
- Chenyang Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of SciencesBeijing100049China
- College of Materials Science and Optoelectronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xin Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of SciencesBeijing100049China
- College of Materials Science and Optoelectronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Jiangfeng Du
- Department of Medical ImagingShanxi Medical UniversityTaiyuan030001China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of SciencesBeijing100049China
- College of Materials Science and Optoelectronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Yuliang Zhao
- College of Materials Science and Optoelectronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
- CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaChinese Academy of SciencesBeijing100190China
- GBA Research Innovation Institute for NanotechnologyGuangdong510700China
| |
Collapse
|
15
|
Affiliation(s)
- Zhongmin Tang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center for Nanomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Peiran Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Han Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Yanyan Liu
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China
| | - Wenbo Bu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
16
|
Li H, Wen H, Zhang Z, Song N, Kwok RTK, Lam JWY, Wang L, Wang D, Tang BZ. Reverse Thinking of the Aggregation‐Induced Emission Principle: Amplifying Molecular Motions to Boost Photothermal Efficiency of Nanofibers**. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Haoxuan Li
- Centre for AIE Research Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Material Science and Engineering Shenzhen University Shenzhen 518061 P. R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering Shenzhen University Shenzhen 518061 P. R. China
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute of Molecular Functional Materials The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong 999077 China
| | - Haifei Wen
- Centre for AIE Research Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Material Science and Engineering Shenzhen University Shenzhen 518061 P. R. China
| | - Zhijun Zhang
- Centre for AIE Research Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Material Science and Engineering Shenzhen University Shenzhen 518061 P. R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering Shenzhen University Shenzhen 518061 P. R. China
| | - Nan Song
- Centre for AIE Research Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Material Science and Engineering Shenzhen University Shenzhen 518061 P. R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering Shenzhen University Shenzhen 518061 P. R. China
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute of Molecular Functional Materials The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong 999077 China
| | - Ryan T. K. Kwok
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute of Molecular Functional Materials The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong 999077 China
| | - Jacky W. Y. Lam
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute of Molecular Functional Materials The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong 999077 China
| | - Lei Wang
- Centre for AIE Research Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Material Science and Engineering Shenzhen University Shenzhen 518061 P. R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering Shenzhen University Shenzhen 518061 P. R. China
| | - Dong Wang
- Centre for AIE Research Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Material Science and Engineering Shenzhen University Shenzhen 518061 P. R. China
| | - Ben Zhong Tang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute of Molecular Functional Materials The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong 999077 China
| |
Collapse
|
17
|
Li Y, Zhao P, Gong T, Wang H, Jiang X, Cheng H, Liu Y, Wu Y, Bu W. Redox Dyshomeostasis Strategy for Hypoxic Tumor Therapy Based on DNAzyme‐Loaded Electrophilic ZIFs. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003653] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yanli Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| | - Peiran Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| | - Teng Gong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
- Center for Interventional Medicine, Guangdong Provincial Key Laboratory of Biomedical Imaging Guangdong Provincial Engineering Research Center of Molecular Imaging The Fifth Affiliated Hospital Sun Yat-sen University Zhuhai Guangdong 519000 P. R. China
| | - Han Wang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P. R. China
| | - Xingwu Jiang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital Tongji University School of Medicine Shanghai 200072 P. R. China
| | - Hui Cheng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| | - Yanyan Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| | - Yelin Wu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital Tongji University School of Medicine Shanghai 200072 P. R. China
| | - Wenbo Bu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P. R. China
| |
Collapse
|
18
|
Li Y, Zhao P, Gong T, Wang H, Jiang X, Cheng H, Liu Y, Wu Y, Bu W. Redox Dyshomeostasis Strategy for Hypoxic Tumor Therapy Based on DNAzyme-Loaded Electrophilic ZIFs. Angew Chem Int Ed Engl 2020; 59:22537-22543. [PMID: 32856362 DOI: 10.1002/anie.202003653] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/27/2020] [Indexed: 12/30/2022]
Abstract
Redox homeostasis is one of the main reasons for reactive oxygen species (ROS) tolerance in hypoxic tumors, limiting ROS-mediated tumor therapy. Proposed herein is a redox dyshomeostasis (RDH) strategy based on a nanoplatform, FeCysPW@ZIF-82@CAT Dz, to disrupt redox homeostasis, and its application to improve ROS-mediated hypoxic tumor therapy. Once endocytosed by tumor cells, the catalase DNAzyme (CAT Dz) loaded zeolitic imidazole framework-82 (ZIF-82@CAT Dz) shell can be degraded into Zn2+ as cofactors for CAT Dz mediated CAT silencing and electrophilic ligands for glutathione (GSH) depletion under hypoxia, both of which lead to intracellular RDH and H2 O2 accumulation. These "disordered" cells show reduced resistance to ROS and are effectively killed by ferrous cysteine-phosphotungstate (FeCysPW) induced chemodynamic therapy (CDT). In vitro and in vivo data demonstrate that the pH/hypoxia/H2 O2 triple stimuli responsive nanocomposite can efficiently kill hypoxic tumors. Overall, the RDH strategy provides a new way of thinking about ROS-mediated treatment of hypoxic tumors.
Collapse
Affiliation(s)
- Yanli Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Peiran Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Teng Gong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China.,Center for Interventional Medicine, Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, 519000, P. R. China
| | - Han Wang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Xingwu Jiang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Hui Cheng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Yanyan Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Yelin Wu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Wenbo Bu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China.,State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| |
Collapse
|
19
|
Reverse Thinking of the Aggregation‐Induced Emission Principle: Amplifying Molecular Motions to Boost Photothermal Efficiency of Nanofibers**. Angew Chem Int Ed Engl 2020; 59:20371-20375. [DOI: 10.1002/anie.202008292] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/27/2020] [Indexed: 11/07/2022]
|
20
|
Liu X, Jin Y, Liu T, Yang S, Zhou M, Wang W, Yu H. Iron-Based Theranostic Nanoplatform for Improving Chemodynamic Therapy of Cancer. ACS Biomater Sci Eng 2020; 6:4834-4845. [DOI: 10.1021/acsbiomaterials.0c01009] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiao Liu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yilan Jin
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tingting Liu
- Department of Medical Imaging, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Shengju Yang
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Mengxue Zhou
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Weiqi Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Haijun Yu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
21
|
Ding B, Zheng P, Jiang F, Zhao Y, Wang M, Chang M, Ma P, Lin J. MnO x Nanospikes as Nanoadjuvants and Immunogenic Cell Death Drugs with Enhanced Antitumor Immunity and Antimetastatic Effect. Angew Chem Int Ed Engl 2020; 59:16381-16384. [PMID: 32484598 DOI: 10.1002/anie.202005111] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/21/2020] [Indexed: 12/22/2022]
Abstract
Despite the widespread applications of manganese oxide nanomaterials (MONs) in biomedicine, the intrinsic immunogenicity of MONs is still unclear. MnOx nanospikes (NSs) as tumor microenvironment (TME)-responsive nanoadjuvants and immunogenic cell death (ICD) drugs are proposed for cancer nanovaccine-based immunotherapy. MnOx NSs with large mesoporous structures show ultrahigh loading efficiencies for ovalbumin and tumor cell fragment. The combination of ICD via chemodynamic therapy and ferroptosis inductions, as well as antigen stimulations, presents a better synergistic immunopotentiation action. Furthermore, the obtained nanovaccines achieve TME-responsive magnetic resonance/photoacoustic dual-mode imaging contrasts, while effectively inhibiting primary/distal tumor growth and tumor metastasis.
Collapse
Affiliation(s)
- Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,University of Science and Technology of China, Hefei, 230026, China
| | - Pan Zheng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Fan Jiang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,University of Science and Technology of China, Hefei, 230026, China
| | - Yajie Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,University of Science and Technology of China, Hefei, 230026, China
| | - Meifang Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,University of Science and Technology of China, Hefei, 230026, China
| | - Mengyu Chang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,University of Science and Technology of China, Hefei, 230026, China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,University of Science and Technology of China, Hefei, 230026, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
22
|
Ding B, Zheng P, Jiang F, Zhao Y, Wang M, Chang M, Ma P, Lin J. MnO
x
Nanospikes as Nanoadjuvants and Immunogenic Cell Death Drugs with Enhanced Antitumor Immunity and Antimetastatic Effect. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Binbin Ding
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Pan Zheng
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
| | - Fan Jiang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Yajie Zhao
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Meifang Wang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Mengyu Chang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
23
|
Zheng M, Jiang T, Yang W, Zou Y, Wu H, Liu X, Zhu F, Qian R, Ling D, McDonald K, Shi J, Shi B. The siRNAsome: A Cation-Free and Versatile Nanostructure for siRNA and Drug Co-delivery. Angew Chem Int Ed Engl 2019; 58:4938-4942. [PMID: 30737876 PMCID: PMC6593984 DOI: 10.1002/anie.201814289] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/23/2019] [Indexed: 12/26/2022]
Abstract
Nanoparticles show great potential for drug delivery. However, suitable nanostructures capable of loading a range of drugs together with the co-delivery of siRNAs, which avoid the problem of cation-associated cytotoxicity, are lacking. Herein, we report an small interfering RNA (siRNA)-based vesicle (siRNAsome), which consists of a hydrophilic siRNA shell, a thermal- and intracellular-reduction-sensitive hydrophobic median layer, and an empty aqueous interior that meets this need. The siRNAsome can serve as a versatile nanostructure to load drug agents with divergent chemical properties, therapeutic proteins as well as co-delivering immobilized siRNAs without transfection agents. Importantly, the inherent thermal/reduction-responsiveness enables controlled drug loading and release. When siRNAsomes are loaded with the hydrophilic drug doxorubicin hydrochloride and anti-P-glycoprotein siRNA, synergistic therapeutic activity is achieved in multidrug resistant cancer cells and a tumor model.
Collapse
Affiliation(s)
- Meng Zheng
- Henan and Macquarie University Joint Centre for Biomedical InnovationSchool of Life SciencesHenan UniversityKaifengHenan475004China
| | - Tong Jiang
- Henan and Macquarie University Joint Centre for Biomedical InnovationSchool of Life SciencesHenan UniversityKaifengHenan475004China
| | - Wen Yang
- Henan and Macquarie University Joint Centre for Biomedical InnovationSchool of Life SciencesHenan UniversityKaifengHenan475004China
| | - Yan Zou
- Henan and Macquarie University Joint Centre for Biomedical InnovationSchool of Life SciencesHenan UniversityKaifengHenan475004China
- Department of Biomedical SciencesFaculty of Medicine & Health SciencesMacquarie UniversitySydneyNSWAustralia
| | - Haigang Wu
- Henan and Macquarie University Joint Centre for Biomedical InnovationSchool of Life SciencesHenan UniversityKaifengHenan475004China
| | - Xiuhua Liu
- College of Chemistry and Chemical EngineeringHenan UniversityKaifeng475004China
| | - Fengping Zhu
- Department of NeurosurgeryHuashan HospitalFudan UniversityShanghai200040China
| | - Rongjun Qian
- Department of NeurosurgeryThe Henan Provincial People's HospitalZhengzhou450003China
| | - Daishun Ling
- Zhejiang Province Key Laboratory of Anti-Cancer Drug ResearchCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Kerrie McDonald
- Cure Brain Cancer Foundation Biomarkers and Translational Research GroupPrince of Wales Clinical SchoolLowy Cancer Research CentreUniversity of New South WalesSydneyNSWAustralia
| | - Jinjun Shi
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | - Bingyang Shi
- Henan and Macquarie University Joint Centre for Biomedical InnovationSchool of Life SciencesHenan UniversityKaifengHenan475004China
- Department of Biomedical SciencesFaculty of Medicine & Health SciencesMacquarie UniversitySydneyNSWAustralia
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
24
|
Zheng M, Jiang T, Yang W, Zou Y, Wu H, Liu X, Zhu F, Qian R, Ling D, McDonald K, Shi J, Shi B. The siRNAsome: A Cation‐Free and Versatile Nanostructure for siRNA and Drug Co‐delivery. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814289] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Meng Zheng
- Henan and Macquarie University Joint Centre for Biomedical InnovationSchool of Life SciencesHenan University Kaifeng Henan 475004 China
| | - Tong Jiang
- Henan and Macquarie University Joint Centre for Biomedical InnovationSchool of Life SciencesHenan University Kaifeng Henan 475004 China
| | - Wen Yang
- Henan and Macquarie University Joint Centre for Biomedical InnovationSchool of Life SciencesHenan University Kaifeng Henan 475004 China
| | - Yan Zou
- Henan and Macquarie University Joint Centre for Biomedical InnovationSchool of Life SciencesHenan University Kaifeng Henan 475004 China
- Department of Biomedical SciencesFaculty of Medicine & Health SciencesMacquarie University Sydney NSW Australia
| | - Haigang Wu
- Henan and Macquarie University Joint Centre for Biomedical InnovationSchool of Life SciencesHenan University Kaifeng Henan 475004 China
| | - Xiuhua Liu
- College of Chemistry and Chemical EngineeringHenan University Kaifeng 475004 China
| | - Fengping Zhu
- Department of NeurosurgeryHuashan HospitalFudan University Shanghai 200040 China
| | - Rongjun Qian
- Department of NeurosurgeryThe Henan Provincial People's Hospital Zhengzhou 450003 China
| | - Daishun Ling
- Zhejiang Province Key Laboratory of Anti-Cancer Drug ResearchCollege of Pharmaceutical SciencesZhejiang University Hangzhou 310058 China
| | - Kerrie McDonald
- Cure Brain Cancer Foundation Biomarkers and Translational Research GroupPrince of Wales Clinical SchoolLowy Cancer Research CentreUniversity of New South Wales Sydney NSW Australia
| | - Jinjun Shi
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical School Boston MA USA
| | - Bingyang Shi
- Henan and Macquarie University Joint Centre for Biomedical InnovationSchool of Life SciencesHenan University Kaifeng Henan 475004 China
- Department of Biomedical SciencesFaculty of Medicine & Health SciencesMacquarie University Sydney NSW Australia
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical School Boston MA USA
| |
Collapse
|
25
|
Li X, Wang X, Zhao C, Shao L, Lu J, Tong Y, Chen L, Cui X, Sun H, Liu J, Li M, Deng X, Wu Y. From one to all: self-assembled theranostic nanoparticles for tumor-targeted imaging and programmed photoactive therapy. J Nanobiotechnology 2019; 17:23. [PMID: 30711005 PMCID: PMC6359812 DOI: 10.1186/s12951-019-0450-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022] Open
Abstract
Background In recent years, multifunctional theranostic nanoparticles have been fabricated by integrating imaging and therapeutic moieties into one single nano-formulations. However, Complexity of production and safety issues limits their further application. Results Herein, we demonstrated self-assembled nanoparticles with single structure as a “from one to all” theranostic platform for tumor-targeted dual-modal imaging and programmed photoactive therapy (PPAT). The nanoparticles were successfully developed through self-assembling of hyaluronic acid (HA)-cystamine-cholesterol (HSC) conjugate, in which IR780 was simultaneously incorporated (HSCI NPs). Due to the proper hydrodynamic size and intrinsic targeting ability of HA, the HSCI NPs could accumulate at the tumor site effectively after systemic administration. In the presence of incorporated IR780, in vivo biodistribution and accumulation behaviors of HSCI NPs could be monitored by photoacoustic imaging. After cellular uptake, the HSCI NPs would disintegrate resulting from cystamine reacting with over-expressed GSH. The released IR780 would induce fluorescence “turn-on” conversion, which could be used to image tumor sites effectively. Upon treatment with 808 nm laser irradiation, PPAT could be achieved in which generated reactive oxygen species (ROS) would produce photodynamic therapy (PDT), and subsequently the raised temperature would be beneficial to tumor photothermal therapy (PTT). Conclusion The self-assembled HSCI NPs could act as “from one to all” theranostic platform for high treatment efficiency via PPAT pattern, which could also real-time monitor NPs accumulation by targeted and dual-modal imaging in a non-invasive way.![]() Electronic supplementary material The online version of this article (10.1186/s12951-019-0450-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xianlei Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xuan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Caiyan Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Leihou Shao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jianqing Lu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing, 100190, China
| | - Yujia Tong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing, 100190, China
| | - Long Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xinyue Cui
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing, 100190, China
| | - Huiling Sun
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing, 100190, China
| | - Junxing Liu
- The First Affiliated Hospital of Jiamusi University, Jiamusi, 154003, China
| | - Mingjun Li
- The First Affiliated Hospital of Jiamusi University, Jiamusi, 154003, China.
| | - Xiongwei Deng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing, 100190, China.
| | - Yan Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
26
|
Tang Z, Liu Y, He M, Bu W. Chemodynamic Therapy: Tumour Microenvironment‐Mediated Fenton and Fenton‐like Reactions. Angew Chem Int Ed Engl 2019; 58:946-956. [DOI: 10.1002/anie.201805664] [Citation(s) in RCA: 920] [Impact Index Per Article: 153.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/22/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Zhongmin Tang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences Shanghai 200050 P.R. China
- University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Yanyan Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200062 P.R. China
| | - Mingyuan He
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200062 P.R. China
| | - Wenbo Bu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences Shanghai 200050 P.R. China
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200062 P.R. China
| |
Collapse
|
27
|
Ranji-Burachaloo H, Gurr PA, Dunstan DE, Qiao GG. Cancer Treatment through Nanoparticle-Facilitated Fenton Reaction. ACS NANO 2018; 12:11819-11837. [PMID: 30457834 DOI: 10.1021/acsnano.8b07635] [Citation(s) in RCA: 360] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Currently, cancer is the second largest cause of death worldwide and has reached critical levels. In spite of all the efforts, common treatments including chemotherapy, photodynamic therapy, and photothermal therapy suffer from various problems which limit their efficiency and performance. For this reason, different strategies are being explored which improve the efficiency of these traditional therapeutic methods or treat the tumor cells directly. One such strategy utilizing the Fenton reaction has been investigated by many groups for the possible treatment of cancer cells. This approach is based on the knowledge that high levels of hydrogen peroxide exist within cancer cells and can be used to catalyze the Fenton reaction, leading to cancer-killing reactive oxygen species. Analysis of the current literature has shown that, due to the diverse morphologies, different sizes, various chemical properties, and the tunable structure of nanoparticles, nanotechnology offers the most promising method to facilitate the Fenton reaction with cancer therapy. This review aims to highlight the use of the Fenton reaction using different nanoparticles to improve traditional cancer therapies and the emerging Fenton-based therapy, highlighting the obstacles, challenges, and promising developments in each of these areas.
Collapse
|
28
|
Tang Z, Liu Y, He M, Bu W. Chemodynamic Therapy: Tumour Microenvironment‐Mediated Fenton and Fenton‐like Reactions. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805664] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zhongmin Tang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences Shanghai 200050 P.R. China
- University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Yanyan Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200062 P.R. China
| | - Mingyuan He
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200062 P.R. China
| | - Wenbo Bu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences Shanghai 200050 P.R. China
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200062 P.R. China
| |
Collapse
|