1
|
Zhang W, Li J, Xia X, Zhou Y. Enhanced Electrochemistry of Single Plasmonic Nanoparticles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wenmin Zhang
- Institute of Chemical Biology and Nanomedicine (ICBN) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Jian Li
- State Key Lab of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Xing‐Hua Xia
- State Key Lab of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yi‐Ge Zhou
- Institute of Chemical Biology and Nanomedicine (ICBN) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| |
Collapse
|
2
|
Alpuche‐Aviles MA. Particle Impact Electrochemistry. ENCYCLOPEDIA OF ELECTROCHEMISTRY 2021:1-30. [DOI: 10.1002/9783527610426.bard030110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
Experiments involving collisions between a single entity and the electrode surface have become an active area of research. The electrochemical contribution of individual nanoparticles (NPs), enzymes, and other entities, such as aggregates or agglomerates, can be determined using particle impact experiments. Destructive nanoimpact experiments of materials, such as Ag, and the electrocatalytic amplification (ECA) are used to detect the NP/electrode interactions. This review covers the seminal work, critical theoretical studies, and some recent applications. The applications to electrocatalysis include measurements of electron transfer rate constants on individual nanoparticles. Applications in analytical chemistry have allowed the detection of nonelectroactive species by detecting the collisions of soft materials, e.g. micellar suspensions and proteins have increased the technique's analytical possibilities. With ECA, NPs can be used as tags for the electrochemical detection of bioanalytes such as DNA, proteins, and liposomes. The theory of ECA collisions, including frequency of collision and the size of the electrochemical current transients, are also covered. For nanoimpacts, the charge measured during a NP electrolysis, such as Ag NP, is used to detect the NP. Measurements of NP diameter are possible, but limitations to this analysis are covered. The electron transfer studies to the electrolysis of Ag and of metal oxides are discussed. Finally, key experimental instrumentations are discussed, including instrumentation techniques for the small currents inherent to single NP measurement. The effect of filtering, instrumentations rise time, and sampling frequency are also covered.
Collapse
|
3
|
Zhou Y, Zhang W, Li J, Xia XH. Enhanced Electrochemistry of Single Plasmonic Nanoparticles. Angew Chem Int Ed Engl 2021; 61:e202115819. [PMID: 34890086 DOI: 10.1002/anie.202115819] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Indexed: 11/10/2022]
Abstract
The structure-function relationship of plasmon enhanced electrochemistry (PEEC) is of great importance for the design of efficient PEEC catalyst, but is rarely investigated at single nanoparticle level for the lack of efficient nanoscale methodology. Herein, we report the utilization of nanoparticle impact electrochemistry to allow single nanoparticle PEEC, where the effect of incident light on the plasmonic Ag/Au nanoparticles for accelerating Co-MOFNs catalyzed hydrogen evolution reaction (HER) is systematically explored. It is found that the plasmon excited hot carrier injection can lower the reaction activation energy, resulting in a much promoted reaction probability and the integral charge generated from individual collisions. Besides, a plasmonic nanoparticle filtering method is established to effectively distinguish different plasmonic nanoparticles. This work provides a unique view in understanding the intrinsic physicochemical properties for PEEC at the nano-confined domains.
Collapse
Affiliation(s)
- Yige Zhou
- Hunan University, Institute of Chemical Biolology and Nanomedicine, 2 South Lushan Road, Yuelu District, 410082, Changsha, CHINA
| | - Wenmin Zhang
- Hunan University, College of Chemistry and Chemical Engineering, CHINA
| | - Jian Li
- Nanjing University, School of Chemistry and Chemical Engineering, CHINA
| | - Xing-Hua Xia
- Nanjing University, School of Chemistry and Chemical Engineering, CHINA
| |
Collapse
|
4
|
Subedi P, Parajuli S, Alpuche-Aviles MA. Single Entity Behavior of CdSe Quantum Dot Aggregates During Photoelectrochemical Detection. Front Chem 2021; 9:733642. [PMID: 34568283 PMCID: PMC8461012 DOI: 10.3389/fchem.2021.733642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
We demonstrate that colloidal quantum dots of CdSe and CdSe/ZnS are detected during the photooxidation of MeOH, under broad spectrum illumination (250 mW/cm2). The stepwise photocurrent vs. time response corresponds to single entities adsorbing to the Pt electrode surface irreversibly. The adsorption/desorption of the QDs and the nature of the single entities is discussed. In suspensions, the QDs behave differently depending on the solvent used to suspend the materials. For MeOH, CdSe is not as stable as CdSe/ZnS under constant illumination. The photocurrent expected for single QDs is discussed. The value of the observed photocurrents, > 1 pA is due to the formation of agglomerates consistent with the collision frequency and suspension stability. The observed frequency of collisions for the stepwise photocurrents is smaller than the diffusion-limited cases expected for single QDs colliding with the electrode surface. Dynamic light scattering and scanning electron microscopy studies support the detection of aggregates. The results indicate that the ZnS layer on the CdSe/ZnS material facilitates the detection of single entities by increasing the stability of the nanomaterial. The rate of hole transfer from the QD aggregates to MeOH outcompetes the dissolution of the CdSe core under certain conditions of electron injection to the Pt electrode and in colloidal suspensions of CdSe/ZnS.
Collapse
Affiliation(s)
- Pradeep Subedi
- Department of Chemistry, University of Nevada, Reno, NV, United States
| | - Suman Parajuli
- Department of Chemistry, University of Nevada, Reno, NV, United States
| | | |
Collapse
|
5
|
Chen M, Lu SM, Peng YY, Ding Z, Long YT. Tracking the Electrocatalytic Activity of a Single Palladium Nanoparticle for the Hydrogen Evolution Reaction. Chemistry 2021; 27:11799-11803. [PMID: 34101910 DOI: 10.1002/chem.202101263] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Indexed: 01/07/2023]
Abstract
The nanoparticle-based electrocatalysts' performance is directly related to their working conditions. In general, a number of nanoparticles are uncontrollably fixed on a millimetre-sized electrode for electrochemical measurements. However, it is hard to reveal the maximum electrocatalytic activity owing to the aggregation and detachment of nanoparticles on the electrode surface. To solve this problem, here, we take the hydrogen evolution reaction (HER) catalyzed by palladium nanoparticles (Pd NPs) as a model system to track the electrocatalytic activity of single Pd NPs by stochastic collision electrochemistry and ensemble electrochemistry, respectively. Compared with the nanoparticle fixed working condition, Pd NPs in the nanoparticle diffused working condition results in a 2-5 orders magnitude enhancement of electrocatalytic activity for HER at various bias potential. Stochastic collision electrochemistry with high temporal resolution gives further insights into the accurate study of NPs' electrocatalytic performance, enabling to dramatically enhance electrocatalytic efficiency.
Collapse
Affiliation(s)
- Mengjie Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Si-Min Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yue-Yi Peng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Zhifeng Ding
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
6
|
Ma H, Gosh UK, Ying Y, Long Y. Stochastic Collision Photoelectrochemistry for Light‐Induced Electron Transfer Dynamics. ChemElectroChem 2021. [DOI: 10.1002/celc.202100439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Hui Ma
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Road Nanjing 210023 P. R. China
| | - Utpal Kumar Gosh
- School of Chemistry & Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Yi‐Lun Ying
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Road Nanjing 210023 P. R. China
- Chemistry and Biomedicine Innovation Center Nanjing University 163 Xianlin Road Nanjing 210023 P. R. China
| | - Yi‐Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Road Nanjing 210023 P. R. China
- School of Chemistry & Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| |
Collapse
|
7
|
Karunathilake N, Gutierrez‐Portocarrero S, Subedi P, Alpuche‐Aviles MA. Reduction Kinetics and Mass Transport of ZnO Single Entities on a Hg Ultramicroelectrode. ChemElectroChem 2020. [DOI: 10.1002/celc.202000031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Pradeep Subedi
- Department of Chemistry University of Nevada Reno Nevada 89557 USA
| | | |
Collapse
|
8
|
Xu W, Zou G, Hou H, Ji X. Single Particle Electrochemistry of Collision. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804908. [PMID: 30740883 DOI: 10.1002/smll.201804908] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/21/2018] [Indexed: 05/23/2023]
Abstract
A novel electrochemistry method using stochastic collision of particles at microelectrode to study their performance in single-particle scale has obtained remarkable development in recent years. This convenient and swift analytical method, which can be called "nanoimpact," is focused on the electrochemical process of the single particle rather than in complex ensemble systems. Many researchers have applied this nanoimpact method to investigate various kinds of materials in many research fields, including sensing, electrochemical catalysis, and energy storage. However, the ways how they utilize the method are quite different and the key points can be classified into four sorts: sensing particles at ultralow concentration, theory optimization, kinetics of mediated catalytic reaction, and redox electrochemistry of the particles. This review gives a brief overview of the development of the nanoimpact method from the four aspects in a new perspective.
Collapse
Affiliation(s)
- Wei Xu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Guoqiang Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Hongshuai Hou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Xiaobo Ji
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| |
Collapse
|
9
|
Peng Y, Guo D, Ma W, Long Y. Intrinsic Electrocatalytic Activity of Gold Nanoparticles Measured by Single Entity Electrochemistry. ChemElectroChem 2018. [DOI: 10.1002/celc.201801065] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yue‐Yi Peng
- Key Laboratory for Advanced MaterialsSchool of Chemistry & Molecular EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Dan Guo
- Key Laboratory for Advanced MaterialsSchool of Chemistry & Molecular EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Wei Ma
- Key Laboratory for Advanced MaterialsSchool of Chemistry & Molecular EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Yi‐Tao Long
- Key Laboratory for Advanced MaterialsSchool of Chemistry & Molecular EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| |
Collapse
|
10
|
Li M, Ge Z, Zhang S, He P, Gu Y, Qi L, Shao Y. Electrocatalytic Reduction of Hydrogen Peroxide by Pd−Ag Nanoparticles Based on the Collisional Approach. ChemElectroChem 2018. [DOI: 10.1002/celc.201801249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mingzhi Li
- College of Chemistry and Molecular EngineeringBeijing National Research Center for Molecular SciencesPeking University 202 Chengfu Road Beijing 100871 P.R. China
| | - Zhiqiang Ge
- College of Chemistry and Molecular EngineeringBeijing National Research Center for Molecular SciencesPeking University 202 Chengfu Road Beijing 100871 P.R. China
| | - Shudong Zhang
- College of Chemistry and Molecular EngineeringBeijing National Research Center for Molecular SciencesPeking University 202 Chengfu Road Beijing 100871 P.R. China
| | - Peng He
- College of Chemistry and Molecular EngineeringBeijing National Research Center for Molecular SciencesPeking University 202 Chengfu Road Beijing 100871 P.R. China
| | - Yaxiong Gu
- College of Chemistry and Molecular EngineeringBeijing National Research Center for Molecular SciencesPeking University 202 Chengfu Road Beijing 100871 P.R. China
| | - Limin Qi
- College of Chemistry and Molecular EngineeringBeijing National Research Center for Molecular SciencesPeking University 202 Chengfu Road Beijing 100871 P.R. China
| | - Yuanhua Shao
- College of Chemistry and Molecular EngineeringBeijing National Research Center for Molecular SciencesPeking University 202 Chengfu Road Beijing 100871 P.R. China
| |
Collapse
|
11
|
Guan P, Bai H, Wang F, Yu H, Xu D, Chen B, Xia T, Fan W, Shi W. Boosting Water Splitting Performance of BiVO
4
Photoanode through Selective Surface Decoration of Ag
2
S. ChemCatChem 2018. [DOI: 10.1002/cctc.201801199] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Peng Guan
- School of Chemistry and Chemical EngineeringJiangsu University Zhenjiang 212013 P. R. China
| | - Hongye Bai
- School of Chemistry and Chemical EngineeringJiangsu University Zhenjiang 212013 P. R. China
| | - Fagen Wang
- School of Chemistry and Chemical EngineeringJiangsu University Zhenjiang 212013 P. R. China
| | - Hao Yu
- College of Chemical and Environmental EngineeringShandong University of Science and Technology Qingdao 266590 P. R. China
| | - Dongbo Xu
- School of Chemistry and Chemical EngineeringJiangsu University Zhenjiang 212013 P. R. China
| | - Biyi Chen
- School of Chemistry and Chemical EngineeringJiangsu University Zhenjiang 212013 P. R. China
| | - Teng Xia
- School of Chemistry and Chemical EngineeringJiangsu University Zhenjiang 212013 P. R. China
| | - Weiqiang Fan
- School of Chemistry and Chemical EngineeringJiangsu University Zhenjiang 212013 P. R. China
| | - Weidong Shi
- School of Chemistry and Chemical EngineeringJiangsu University Zhenjiang 212013 P. R. China
| |
Collapse
|
12
|
Kanokkanchana K, Saw EN, Tschulik K. Nano Impact Electrochemistry: Effects of Electronic Filtering on Peak Height, Duration and Area. ChemElectroChem 2018. [DOI: 10.1002/celc.201800738] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kannasoot Kanokkanchana
- Chair of Analytical Chemistry IIDepartment of Chemistry and BiochemistryRuhr University Bochum Bochum Germany
| | - En N. Saw
- Chair of Analytical Chemistry IIDepartment of Chemistry and BiochemistryRuhr University Bochum Bochum Germany
| | - Kristina Tschulik
- Chair of Analytical Chemistry IIDepartment of Chemistry and BiochemistryRuhr University Bochum Bochum Germany
| |
Collapse
|
13
|
Li P, He Q, Liu H, Liu Y, Su J, Tian N, Zhan D. Collision Incidents of Single Tetrahexahedral Platinum Nanocrystals Recorded by a Carbon Nanoelectrode. ChemElectroChem 2018. [DOI: 10.1002/celc.201800650] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Pei Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Centre of Chemistry for Energy Materials College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| | - Quanfeng He
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Centre of Chemistry for Energy Materials College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| | - Hai‐Xia Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Centre of Chemistry for Energy Materials College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
- Key Laboratory of Mesoscopic Chemistry of MOE Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| | - Yunhua Liu
- National CAD Support Software Engineering Research CenterHuazhong University of Science and Technology Wuhan 430074 China
| | - Jian‐Jia Su
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Centre of Chemistry for Energy Materials College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| | - Na Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Centre of Chemistry for Energy Materials College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| | - Dongping Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Centre of Chemistry for Energy Materials College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| |
Collapse
|
14
|
Sun L, Wang W, Chen H. Dynamic Nanoparticle‐Substrate Contacts Regulate Multi‐Peak Behavior of Single Silver Nanoparticle Collisions. ChemElectroChem 2018. [DOI: 10.1002/celc.201800640] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Linlin Sun
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Hong‐Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| |
Collapse
|