1
|
Hirschbiegel CM, Zhang X, Huang R, Cicek YA, Fedeli S, Rotello VM. Inorganic nanoparticles as scaffolds for bioorthogonal catalysts. Adv Drug Deliv Rev 2023; 195:114730. [PMID: 36791809 PMCID: PMC10170407 DOI: 10.1016/j.addr.2023.114730] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
Bioorthogonal transition metal catalysts (TMCs) transform therapeutically inactive molecules (pro-drugs) into active drug compounds. Inorganic nanoscaffolds protect and solubilize catalysts while offering a flexible design space for decoration with targeting elements and stimuli-responsive activity. These "drug factories" can activate pro-drugs in situ, localizing treatment to the disease site and minimizing off-target effects. Inorganic nanoscaffolds provide structurally diverse scaffolds for encapsulating TMCs. This ability to define the catalyst environment can be employed to enhance the stability and selectivity of the TMC, providing access to enzyme-like bioorthogonal processes. The use of inorganic nanomaterials as scaffolds TMCs and the use of these bioorthogonal nanozymes in vitro and in vivo applications will be discussed in this review.
Collapse
Affiliation(s)
| | - Xianzhi Zhang
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA
| | - Rui Huang
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA
| | - Yagiz Anil Cicek
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA
| | - Stefano Fedeli
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA.
| |
Collapse
|
2
|
Wu C, Zhao X, Wang D, Si X, Li T. A robust hollow metal-organic framework with enhanced diffusion for size selective catalysis. Chem Sci 2022; 13:13338-13346. [PMID: 36507163 PMCID: PMC9682891 DOI: 10.1039/d2sc02838g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/15/2022] [Indexed: 12/15/2022] Open
Abstract
Single crystalline (SC) hollow metal-organic frameworks (MOFs) are excellent host materials for molecular and nanoparticle catalysts. However, due to synthetic challenges, chemically robust SC hollow MOFs are rare. This work reports the construction of a defect-free and chemically stable SC hollow MOF, MOF-801(h), through templated growth from a unit cell mismatched core, UiO-66. Under the protection of excess MOF-801 ligand, fumaric acid, the MOF-801 shell was perfectly retained while the isoreticular UiO-66 core was selectively and completely etched away by formic acid. The combination of a large cavity, small aperture and short diffusion length allows the Pt nanoparticle encapsulated composite catalyst, Pt⊂MOF-801(h), to perform size selective hydrogenation of nitro compounds at an accelerated speed. Impressively, the catalyst can undergo concentrated HCl or boiling water treatment while maintaining its crystallinity, morphology, catalytic activity, and size selectivity. In addition, Au nanoparticles encapsulated catalyst, Au⊂MOF-801(h), was used for the size selective nucleophilic addition of HCl to terminal alkynes for the first time, which is a harsh reaction involving high concentrations of a strong acid.
Collapse
Affiliation(s)
- Chunhui Wu
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 People's Republic of China
| | - Xiaowen Zhao
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 People's Republic of China
| | - Dongxu Wang
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 People's Republic of China
| | - Xiaomeng Si
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 People's Republic of China
| | - Tao Li
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 People's Republic of China
| |
Collapse
|
3
|
Halliwell CA, Dann SE, Ferrando‐Soria J, Plasser F, Yendall K, Ramos‐Fernandez EV, Vladisavljević GT, Elsegood MRJ, Fernandez A. Hierarchical Assembly of a Micro- and Macroporous Hydrogen-Bonded Organic Framework with Tailored Single-Crystal Size. Angew Chem Int Ed Engl 2022; 61:e202208677. [PMID: 36161683 PMCID: PMC9827975 DOI: 10.1002/anie.202208677] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Indexed: 01/12/2023]
Abstract
Porous organic molecular materials represent an emergent field of research in Chemistry and Materials Science due to their unique combination of properties. To enhance their performance and expand the number of applications, the incorporation of hierarchical porosity is required, as exclusive microporosity entails several limitations. However, the integration of macropores in porous organic molecular materials is still an outstanding challenge. Herein, we report the first example of a hydrogen-bonded organic framework (MM-TPY) with hierarchical skeletal morphology, containing stable micro- and macroporosity. The crystal size, from micro to centimetre scale, can be controlled in a single step without using additives or templates. The mechanism of assembly during the crystal formation is compatible with a skeletal crystal growth. As proof of concept, we employed the hierarchical porosity as a platform for the dual, sequential and selective co-recognition of molecular species and microparticles.
Collapse
Affiliation(s)
| | - Sandra E. Dann
- Chemistry DepartmentSchool of ScienceLoughborough UniversityLoughboroughLE11 3TUUK
| | | | - Felix Plasser
- Chemistry DepartmentSchool of ScienceLoughborough UniversityLoughboroughLE11 3TUUK
| | - Keith Yendall
- School of AeronauticalAutomotiveChemical and Materials EngineeringAACME)Loughborough UniversityLoughboroughLE11 3TUUK
| | - Enrique V. Ramos‐Fernandez
- Laboratorio de Materiales AvanzadosDepartamento de Química Inorgánica-Instituto Universitario de Materiales de AlicanteUniversity of AlicanteAlicanteE-03080Spain
| | - Goran T. Vladisavljević
- School of AeronauticalAutomotiveChemical and Materials EngineeringAACME)Loughborough UniversityLoughboroughLE11 3TUUK
| | - Mark R. J. Elsegood
- Chemistry DepartmentSchool of ScienceLoughborough UniversityLoughboroughLE11 3TUUK
| | - Antonio Fernandez
- Chemistry DepartmentSchool of ScienceLoughborough UniversityLoughboroughLE11 3TUUK
| |
Collapse
|
4
|
Li Y, Jiang XX, Xie JX, Lv YK. Recent Advances in the Application and Mechanism of Carbon Dots/Metal-Organic Frameworks Hybrids in Photocatalysis and the Detection of Environmental Pollutants. Chem Asian J 2022; 17:e202200283. [PMID: 35460188 DOI: 10.1002/asia.202200283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/22/2022] [Indexed: 11/12/2022]
Abstract
Metal-organic frameworks (MOFs) are a class of crystalline porous materials with simple synthesis conditions, large specific surface area, structural diversity, and a wide range of interesting properties. The integration of MOFs with other materials can provide new multifunctional composites that exhibit both component properties and new characteristics. In recent years, the integration of carbon dots (CDs) into MOFs to form composites has shown improved optical properties and fascinating new characteristics. This review focuses on the design and synthesis strategies of CDs@MOFs composites (including pore-confined synthesis, in situ encapsulation, post-synthesis modification and impregnation method) and their recent research progress in photocatalysis and detection of environmental pollutants. Both the achievements and problems are evaluated and proposed, and the opportunities and challenges of CDs@MOF composite are discussed.
Collapse
Affiliation(s)
- Yuan Li
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China
| | - Xiao-Xue Jiang
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China
| | - Jia-Xiu Xie
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China
| | - Yun-Kai Lv
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China
| |
Collapse
|
5
|
Hierarchically encapsulating enzymes with multi-shelled metal-organic frameworks for tandem biocatalytic reactions. Nat Commun 2022; 13:305. [PMID: 35027566 PMCID: PMC8758787 DOI: 10.1038/s41467-022-27983-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 12/10/2021] [Indexed: 01/25/2023] Open
Abstract
Biocatalytic transformations in living organisms, such as multi-enzyme catalytic cascades, proceed in different cellular membrane-compartmentalized organelles with high efficiency. Nevertheless, it remains challenging to mimicking biocatalytic cascade processes in natural systems. Herein, we demonstrate that multi-shelled metal-organic frameworks (MOFs) can be used as a hierarchical scaffold to spatially organize enzymes on nanoscale to enhance cascade catalytic efficiency. Encapsulating multi-enzymes with multi-shelled MOFs by epitaxial shell-by-shell overgrowth leads to 5.8~13.5-fold enhancements in catalytic efficiencies compared with free enzymes in solution. Importantly, multi-shelled MOFs can act as a multi-spatial-compartmental nanoreactor that allows physically compartmentalize multiple enzymes in a single MOF nanoparticle for operating incompatible tandem biocatalytic reaction in one pot. Additionally, we use nanoscale Fourier transform infrared (nano-FTIR) spectroscopy to resolve nanoscale heterogeneity of vibrational activity associated to enzymes encapsulated in multi-shelled MOFs. Furthermore, multi-shelled MOFs enable facile control of multi-enzyme positions according to specific tandem reaction routes, in which close positioning of enzyme-1-loaded and enzyme-2-loaded shells along the inner-to-outer shells could effectively facilitate mass transportation to promote efficient tandem biocatalytic reaction. This work is anticipated to shed new light on designing efficient multi-enzyme catalytic cascades to encourage applications in many chemical and pharmaceutical industrial processes. Mimicking multi-enzyme catalytic cascades in natural systems with spatial organization in confined structures is gaining increasing attention in the emerging field of systems chemistry. Here, the authors demonstrate that multi-shelled metal-organic frameworks can be used as a hierarchical scaffold to spatially organize enzymes on nanoscale to enhance cascade catalytic efficiency.
Collapse
|
6
|
Qiu T, Gao S, Liang Z, Wang D, Tabassum H, Zhong R, Zou R. Pristine Hollow Metal–Organic Frameworks: Design, Synthesis and Application. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012699] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Tianjie Qiu
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials School of Materials Science and Engineering Peking University Beijing 100871 China
| | - Song Gao
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials School of Materials Science and Engineering Peking University Beijing 100871 China
- Institute of Clean Energy Peking University Beijing 100871 P. R. China
| | - Zibin Liang
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials School of Materials Science and Engineering Peking University Beijing 100871 China
| | - De‐Gao Wang
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials School of Materials Science and Engineering Peking University Beijing 100871 China
| | - Hassina Tabassum
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials School of Materials Science and Engineering Peking University Beijing 100871 China
| | - Ruiqin Zhong
- Key Laboratory of Heavy Oil Processing China University of Petroleum Beijing 102249 China
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials School of Materials Science and Engineering Peking University Beijing 100871 China
- Institute of Clean Energy Peking University Beijing 100871 P. R. China
| |
Collapse
|
7
|
Qiu T, Gao S, Liang Z, Wang D, Tabassum H, Zhong R, Zou R. Pristine Hollow Metal–Organic Frameworks: Design, Synthesis and Application. Angew Chem Int Ed Engl 2021; 60:17314-17336. [DOI: 10.1002/anie.202012699] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Tianjie Qiu
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials School of Materials Science and Engineering Peking University Beijing 100871 China
| | - Song Gao
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials School of Materials Science and Engineering Peking University Beijing 100871 China
- Institute of Clean Energy Peking University Beijing 100871 P. R. China
| | - Zibin Liang
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials School of Materials Science and Engineering Peking University Beijing 100871 China
| | - De‐Gao Wang
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials School of Materials Science and Engineering Peking University Beijing 100871 China
| | - Hassina Tabassum
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials School of Materials Science and Engineering Peking University Beijing 100871 China
| | - Ruiqin Zhong
- Key Laboratory of Heavy Oil Processing China University of Petroleum Beijing 102249 China
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials School of Materials Science and Engineering Peking University Beijing 100871 China
- Institute of Clean Energy Peking University Beijing 100871 P. R. China
| |
Collapse
|
8
|
Zhong H, Lo W, Man T, Williams BP, Li D, Chen S, Pei H, Li L, Tsung C. Stabilizing DNAzymes through Encapsulation in a Metal–Organic Framework. Chemistry 2020; 26:12931-12935. [DOI: 10.1002/chem.202002178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Huiye Zhong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P.R. China
| | - Wei‐Shang Lo
- Department of Chemistry Merkert Chemistry Center Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - Tiantian Man
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P.R. China
| | - Benjamin P. Williams
- Department of Chemistry Merkert Chemistry Center Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - Dan Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P.R. China
| | - Sheng‐Yu Chen
- School of Physical Science and Technology ShanghaiTech University 393 Middle Huaxia Road Pudong, Shanghai 201210 P.R. China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P.R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 500 Dongchuan Road Shanghai 200241 P.R. China
| | - Chia‐Kuang Tsung
- Department of Chemistry Merkert Chemistry Center Boston College 2609 Beacon Street Chestnut Hill MA 02467 USA
| |
Collapse
|
9
|
Chen SY, Lo WS, Huang YD, Si X, Liao FS, Lin SW, Williams BP, Sun TQ, Lin HW, An Y, Sun T, Ma Y, Yang HC, Chou LY, Shieh FK, Tsung CK. Probing Interactions between Metal-Organic Frameworks and Freestanding Enzymes in a Hollow Structure. NANO LETTERS 2020; 20:6630-6635. [PMID: 32786948 DOI: 10.1021/acs.nanolett.0c02265] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
It has been reported that the biological functions of enzymes could be altered when they are encapsulated in metal-organic frameworks (MOFs) due to the interactions between them. Herein, we probed the interactions of catalase in solid and hollow ZIF-8 microcrystals. The solid sample with confined catalase is prepared through a reported method, and the hollow sample is generated by hollowing the MOF crystals, sealing freestanding enzymes in the central cavities of hollow ZIF-8. During the hollowing process, the samples were monitored by small-angle X-ray scattering (SAXS) spectroscopy, electron microscopy, powder X-ray diffraction (PXRD), and nitrogen sorption. The interfacial interactions of the two samples were studied by infrared (IR) and fluorescence spectroscopy. IR study shows that freestanding catalase has less chemical interaction with ZIF-8 than confined catalase, and a fluorescence study indicates that the freestanding catalase has lower structural confinement. We have then carried out the hydrogen peroxide degradation activities of catalase at different stages and revealed that the freestanding catalase in hollow ZIF-8 has higher activity.
Collapse
Affiliation(s)
- Sheng-Yu Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wei-Shang Lo
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Yi-Da Huang
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Xiaomeng Si
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Fu-Siang Liao
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Shang-Wei Lin
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Benjamin P Williams
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Ting-Qian Sun
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Hao-Wei Lin
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Yuanyuan An
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tu Sun
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yanhang Ma
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hsiao-Ching Yang
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Lien-Yang Chou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Fa-Kuen Shieh
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Chia-Kuang Tsung
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
10
|
Ren SZ, Wang B, Zhu XH, Zhu D, Liu M, Li SK, Yang YS, Wang ZC, Zhu HL. Oxygen Self-Sufficient Core-Shell Metal-Organic Framework-Based Smart Nanoplatform for Enhanced Synergistic Chemotherapy and Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:24662-24674. [PMID: 32394704 DOI: 10.1021/acsami.0c08534] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The abnormal angiogenesis and insufficient oxygen supply in solid tumors lead to intratumoral hypoxia, which severely limits the efficacy of traditional photodynamic therapy (PDT). Here, a multifunctional nanoplatform (ZDZP@PP) based on a zeolitic imidazolate framework-67 (ZIF-67) core as a hydrogen peroxide catalyst, a zeolitic imidazolate framework-8 (ZIF-8) shell with a pH-responsive property, and a polydopamine-poly(ethylene glycol) (PDA-PEG) layer for improving the biocompatibility is fabricated for not only relieving tumor hypoxia but also enhancing the efficacy of combination chemo-photodynamic therapy. The chemotherapy drug doxorubicin (DOX) and photosensitizer protoporphyrin IX (PpIX) are encapsulated in different layers independently; thus, a unique two-stage stepwise release becomes possible. Moreover, the nanoplatform can effectively decompose hydrogen peroxide to produce oxygen and thus relieve tumor hypoxia, which further facilitates the production of cytotoxic reactive oxygen species (ROS) by PpIX under laser irradiation. Both in vitro and in vivo experimental results confirm that the combination chemo-photodynamic therapy with the ZDZP@PP nanoplatform can provide more effective cancer treatment than chemotherapy or PDT alone. Consequently, the oxygen self-sufficient multifunctional nanoplatform holds promising potential to overcome hypoxia and treat solid tumors in the future.
Collapse
Affiliation(s)
- Shen-Zhen Ren
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Bin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xiao-Hua Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Dan Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ming Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Shu-Kai Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yu-Shun Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zhong-Chang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
11
|
Liang TY, Senthil Raja D, Chin KC, Huang CL, Sethupathi SA, Leong LK, Tsai DH, Lu SY. Bimetallic Metal-Organic Framework-Derived Hybrid Nanostructures as High-Performance Catalysts for Methane Dry Reforming. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15183-15193. [PMID: 32167283 DOI: 10.1021/acsami.0c00086] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Syngas, consisting of equimolar CO and H2, is an important feedstock for large-scale production of a wide range of commodity chemicals including aldehyde, methanol, ammonia, and other oxygenated chemicals. Dry reforming of methane (DRM), proceeding by reacting greenhouse gases, CO2 and CH4, at high temperatures in the presence of a metal catalyst, is considered one of the most environmentally friendly routes for syngas production. Nevertheless, nonprecious metal-based catalysts, which can operate at relatively low temperatures for high product yields and selectivities, are required to drive the DRM process for industrial applications effectively. Here, we developed NiCo@C nanocomposites from a corresponding NiCo-based bimetallic metal-organic framework (MOF) to serve as high-performance catalysts for the DRM process, achieving high turnover frequencies (TOF) at low temperatures (>5.7 s-1 at 600 °C) and high product selectivities (H2/CO = 0.9 at 700 °C). The incorporation of Co in Ni catalysts improves the operation stability and light-off stability. The present development for MOF-derived nanocomposites opens a new horizon for design of DRM catalysts.
Collapse
Affiliation(s)
- Teng-Yun Liang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, R.O.C
| | - Duraisamy Senthil Raja
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, R.O.C
| | - Kah Chun Chin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, R.O.C
- Lee Kong Chian Faculty of Science and Engineering, Universiti Tunku Abdul Rahman, Jalan Sungai Long 9, Bandar Sungai Long, 43000 Kajang, Selangor, Malaysia
| | - Chun-Lung Huang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, R.O.C
| | - Sumathi A/P Sethupathi
- Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Loong Kong Leong
- Lee Kong Chian Faculty of Science and Engineering, Universiti Tunku Abdul Rahman, Jalan Sungai Long 9, Bandar Sungai Long, 43000 Kajang, Selangor, Malaysia
| | - De-Hao Tsai
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, R.O.C
| | - Shih-Yuan Lu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, R.O.C
| |
Collapse
|
12
|
Liu W, Zhou Y, Bao J, Wang J, Zhang Y, Sheng X, Xue Y, Guo C, Chen X. Co-CoO/ZnFe2O4 encapsulated in carbon nanowires derived from MOFs as electrocatalysts for hydrogen evolution. J Colloid Interface Sci 2020; 561:620-628. [DOI: 10.1016/j.jcis.2019.11.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 10/25/2022]
|
13
|
Ke SC, Luo TT, Chang GG, Huang KX, Li JX, Ma XC, Wu J, Chen J, Yang XY. Spatially Ordered Arrangement of Multifunctional Sites at Molecule Level in a Single Catalyst for Tandem Synthesis of Cyclic Carbonates. Inorg Chem 2020; 59:1736-1745. [PMID: 31927961 DOI: 10.1021/acs.inorgchem.9b02952] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
With fossil energy resources increasingly drying up and gradually causing serious environmental impacts, pursuing a tandem and green synthetic route for a complex and high-value-added compound by using low-cost raw materials has attracted considerable attention. In this regard, the selective and efficient conversion of light olefins with CO2 into high-value-added organic cyclic carbonates (OCCs) is of great significance owing to their high atom economy and absence of the isolation of intermediates. To fulfill this expectation, a multifunctional catalytic system with controllable spatial arrangement of varied catalytic sites and stable texture, in particular, within a single catalyst, is generally needed. Here, by using a stepwise electrostatic interaction strategy, imidazolium-based ILs and Au nanoparticles (NPs) were stepwise immobilized into a sulfonic group grafted MOF to construct a multifunctional single catalyst with a highly ordered arrangement of catalytic sites. The Au NPs and imidazolium cation are separately responsible for the selective epoxidation and cycloaddition reaction. The mesoporous cage within the MOF enriches the substrate molecules and provides a confined catalytic room for the tandem catalysis. More importantly, the highly ordered arrangement of the varied active sites and strong electrostatic attraction interaction result in the intimate contact and effective mass transfer between the catalytic sites, which allow for the highly efficient (>74% yield) and stable (repeatedly usage for at least 8 times) catalytic transformation. The stepwise electrostatic interaction strategy herein provides an absolutely new approach in fabricating the controllable multifunctional catalysts, especially for tandem catalysis.
Collapse
Affiliation(s)
- Shan-Chao Ke
- School of Chemistry, Chemical Engineering and Life Science , Wuhan University of Technology , 122 Luoshi Road , 430070 Wuhan , Hubei , China
| | - Ting-Ting Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing , Wuhan University of Technology , 122 Luoshi Road , 430070 Wuhan , Hubei , China.,Material Research and Testing Center of Wuhan University of Technology, Nanostructure Research Centre , 122 Luoshi Road , 430070 Wuhan , Hubei , China
| | - Gang-Gang Chang
- School of Chemistry, Chemical Engineering and Life Science , Wuhan University of Technology , 122 Luoshi Road , 430070 Wuhan , Hubei , China
| | - Ke-Xin Huang
- School of Chemistry, Chemical Engineering and Life Science , Wuhan University of Technology , 122 Luoshi Road , 430070 Wuhan , Hubei , China
| | - Jia-Xin Li
- School of Chemistry, Chemical Engineering and Life Science , Wuhan University of Technology , 122 Luoshi Road , 430070 Wuhan , Hubei , China.,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing , Wuhan University of Technology , 122 Luoshi Road , 430070 Wuhan , Hubei , China
| | - Xiao-Chen Ma
- School of Chemistry, Chemical Engineering and Life Science , Wuhan University of Technology , 122 Luoshi Road , 430070 Wuhan , Hubei , China.,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing , Wuhan University of Technology , 122 Luoshi Road , 430070 Wuhan , Hubei , China
| | - Jian Wu
- School of Chemistry, Chemical Engineering and Life Science , Wuhan University of Technology , 122 Luoshi Road , 430070 Wuhan , Hubei , China.,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing , Wuhan University of Technology , 122 Luoshi Road , 430070 Wuhan , Hubei , China
| | - Jian Chen
- School of Chemistry, Chemical Engineering and Life Science , Wuhan University of Technology , 122 Luoshi Road , 430070 Wuhan , Hubei , China
| | - Xiao-Yu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing , Wuhan University of Technology , 122 Luoshi Road , 430070 Wuhan , Hubei , China
| |
Collapse
|
14
|
Zhou A, Dou Y, Zhou J, Li JR. Rational Localization of Metal Nanoparticles in Yolk-Shell MOFs for Enhancing Catalytic Performance in Selective Hydrogenation of Cinnamaldehyde. CHEMSUSCHEM 2020; 13:205-211. [PMID: 31556474 DOI: 10.1002/cssc.201902272] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/25/2019] [Indexed: 06/10/2023]
Abstract
The development of sustainable catalysts to simultaneously improve activity and selectivity remains a challenge. Herein, it is demonstrated that metal nanoparticles (MNPs) can be encapsulated into a yolk-shell metal-organic framework (MOF) with controllable spatial localization to optimize catalytic performance. When the MNPs are located in the void space between the shell and the core of the MOF, the resulting MNPs@MOF composites show both high catalytic activity and selectivity toward the hydrogenation of α,β-unsaturated aldehydes. In particular, the easily recoverable and stable Ptvoid @MOF(Y) shows an exceptionally high selectivity of 98.2 % for cinnamyl alcohol at a high conversion of 97 %. The excellent performance can be attributed to easy diffusion of the reactants to access highly exposed MNPs in the MOF support, as well as the improved adsorption of the reactant and desorption of the product due to the appropriate metal-support interaction and rich void space between core and shell.
Collapse
Affiliation(s)
- Awu Zhou
- Beijing Key Laboratory for Green Catalysis and Separation and, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Yibo Dou
- Beijing Key Laboratory for Green Catalysis and Separation and, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Jian Zhou
- Beijing Key Laboratory for Green Catalysis and Separation and, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| |
Collapse
|
15
|
Wu C, Chou LY, Long L, Si X, Lo WS, Tsung CK, Li T. Structural Control of Uniform MOF-74 Microcrystals for the Study of Adsorption Kinetics. ACS APPLIED MATERIALS & INTERFACES 2019; 11:35820-35826. [PMID: 31502435 DOI: 10.1021/acsami.9b13965] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Metal-organic frameworks (MOFs) is a promising class of sorbent materials for swing adsorption gas separation. However, although sorption kinetics plays a major role in column breakthrough experiments, it is rarely studied with MOF materials. This is largely because the synthesis of uniform yet separation-relevant MOFs is a challenging task. Here, we report a dual-modulation approach for the synthesis of well-defined Mg-MOF-74 hexagonal rods with an extremely uniform size distribution (polydispersity index = 1.02). Through epitaxial growth and wet chemical etching, uniform hollow Ni-MOF-74 with plate-shaped caps were obtained. CO2 adsorption kinetic study shows that hollow Ni-MOF-74 exhibits 54% faster diffusion rate compared to solid Ni-MOF-74 due to a shortened diffusion length, despite their identical CO2 uptake capacity. This has led to a 21% extension of column breakthrough time during CO2/N2 separation under identical conditions.
Collapse
Affiliation(s)
- Chunhui Wu
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Lien-Yang Chou
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Liuliu Long
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Xiaomeng Si
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Wei-Shang Lo
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Chia-Kuang Tsung
- Department of Chemistry, Merkert Chemistry Center , Boston College , Chestnut Hill , Massachusetts 02467 , United States
| | - Tao Li
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| |
Collapse
|
16
|
Terzopoulou A, Hoop M, Chen X, Hirt AM, Charilaou M, Shen Y, Mushtaq F, del Pino AP, Logofatu C, Simonelli L, Mello AJ, Doonan CJ, Sort J, Nelson BJ, Pané S, Puigmartí‐Luis J. Mineralization‐Inspired Synthesis of Magnetic Zeolitic Imidazole Framework Composites. Angew Chem Int Ed Engl 2019; 58:13550-13555. [DOI: 10.1002/anie.201907389] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Anastasia Terzopoulou
- Multi-Scale Robotics Lab (MSRL)Institute of Robotics and Intelligent Systems (IRIS)ETH Zurich Tannenstrasse 3 8092 Zurich Switzerland
| | - Marcus Hoop
- Multi-Scale Robotics Lab (MSRL)Institute of Robotics and Intelligent Systems (IRIS)ETH Zurich Tannenstrasse 3 8092 Zurich Switzerland
| | - Xiang‐Zhong Chen
- Multi-Scale Robotics Lab (MSRL)Institute of Robotics and Intelligent Systems (IRIS)ETH Zurich Tannenstrasse 3 8092 Zurich Switzerland
| | - Ann M. Hirt
- Institute of GeophysicsETH Zurich Sonnegstrasse 5 8092 Zurich Switzerland
| | - Michalis Charilaou
- Laboratory of Metal Physics and TechnologyDepartment of MaterialsETH Zurich Vladimir Prelog Weg 1 8093 Zurich Switzerland
| | - Yang Shen
- Institute of Food, Nutrition and HealthETH Zurich Schmelzbergstrasse 7 8092 Zurich Switzerland
| | - Fajer Mushtaq
- Multi-Scale Robotics Lab (MSRL)Institute of Robotics and Intelligent Systems (IRIS)ETH Zurich Tannenstrasse 3 8092 Zurich Switzerland
| | - Angel Pérez del Pino
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB 08193 Bellaterra Spain
| | - Constantin Logofatu
- National Institute for Materials Physics PO Box MG 7 77125 Bucharest Romania
| | - Laura Simonelli
- CELLS—ALBA Synchrotron Radiation Facility Carrer de la Llum 2–26 08290 Cerdanyola del Valles Barcelona Spain
| | - Andrew J. Mello
- Institute of Chemical and BioengineeringETH Zurich Vladimir Prelog Weg 1 8093 Zurich Switzerland
| | - Christian J. Doonan
- School of Chemistry and PhysicsUniversity of Adelaide Adelaide South Australia 5005 Australia
| | - Jordi Sort
- Institució Catalana de Recerca i Estudis Avançats (ICREA) and Departament de FísicaUniversitat Autònoma de Barcelona Barcelona 08193 Bellaterra Spain
| | - Bradley J. Nelson
- Multi-Scale Robotics Lab (MSRL)Institute of Robotics and Intelligent Systems (IRIS)ETH Zurich Tannenstrasse 3 8092 Zurich Switzerland
| | - Salvador Pané
- Multi-Scale Robotics Lab (MSRL)Institute of Robotics and Intelligent Systems (IRIS)ETH Zurich Tannenstrasse 3 8092 Zurich Switzerland
| | - Josep Puigmartí‐Luis
- Institute of Chemical and BioengineeringETH Zurich Vladimir Prelog Weg 1 8093 Zurich Switzerland
| |
Collapse
|
17
|
Liu D, Wan J, Pang G, Tang Z. Hollow Metal-Organic-Framework Micro/Nanostructures and their Derivatives: Emerging Multifunctional Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1803291. [PMID: 30548351 DOI: 10.1002/adma.201803291] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/05/2018] [Indexed: 05/20/2023]
Abstract
Hollow metal-organic framework (MOF) micro/nanostructures and their derivatives are attracting a great amount of research interest in recent years because their hierarchical porous structures not only provide abundant, easily accessed metal sites but also endow 3D channels for rapid mass transport. As a result, they demonstrate significant advantages in many applications including catalysis, gas sensors, batteries, supercapacitors, and so on. Nevertheless, studies on hollow MOFs and their derivatives are still at the beginning of this field, and the relationship between their structures and application performances is not yet reviewed comprehensively. Herein, the synthetic strategies and practical applications of hollow micro/nanostructured MOFs and their derivatives are summarized, and their corresponding prospects are also discussed.
Collapse
Affiliation(s)
- Di Liu
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Chinese Academy of Sciences, No. 11, Beiyitiao, Zhongguancun, Beijing, 100190, P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jiawei Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Beiertiao, Zhongguancun, Haidian District, Beijing, 100190, P. R. China
| | - Guangsheng Pang
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Chinese Academy of Sciences, No. 11, Beiyitiao, Zhongguancun, Beijing, 100190, P. R. China
| | - Zhiyong Tang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
18
|
Terzopoulou A, Hoop M, Chen X, Hirt AM, Charilaou M, Shen Y, Mushtaq F, del Pino AP, Logofatu C, Simonelli L, Mello AJ, Doonan CJ, Sort J, Nelson BJ, Pané S, Puigmartí‐Luis J. Mineralization‐Inspired Synthesis of Magnetic Zeolitic Imidazole Framework Composites. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anastasia Terzopoulou
- Multi-Scale Robotics Lab (MSRL)Institute of Robotics and Intelligent Systems (IRIS)ETH Zurich Tannenstrasse 3 8092 Zurich Switzerland
| | - Marcus Hoop
- Multi-Scale Robotics Lab (MSRL)Institute of Robotics and Intelligent Systems (IRIS)ETH Zurich Tannenstrasse 3 8092 Zurich Switzerland
| | - Xiang‐Zhong Chen
- Multi-Scale Robotics Lab (MSRL)Institute of Robotics and Intelligent Systems (IRIS)ETH Zurich Tannenstrasse 3 8092 Zurich Switzerland
| | - Ann M. Hirt
- Institute of GeophysicsETH Zurich Sonnegstrasse 5 8092 Zurich Switzerland
| | - Michalis Charilaou
- Laboratory of Metal Physics and TechnologyDepartment of MaterialsETH Zurich Vladimir Prelog Weg 1 8093 Zurich Switzerland
| | - Yang Shen
- Institute of Food, Nutrition and HealthETH Zurich Schmelzbergstrasse 7 8092 Zurich Switzerland
| | - Fajer Mushtaq
- Multi-Scale Robotics Lab (MSRL)Institute of Robotics and Intelligent Systems (IRIS)ETH Zurich Tannenstrasse 3 8092 Zurich Switzerland
| | - Angel Pérez del Pino
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB 08193 Bellaterra Spain
| | - Constantin Logofatu
- National Institute for Materials Physics PO Box MG 7 77125 Bucharest Romania
| | - Laura Simonelli
- CELLS—ALBA Synchrotron Radiation Facility Carrer de la Llum 2–26 08290 Cerdanyola del Valles Barcelona Spain
| | - Andrew J. Mello
- Institute of Chemical and BioengineeringETH Zurich Vladimir Prelog Weg 1 8093 Zurich Switzerland
| | - Christian J. Doonan
- School of Chemistry and PhysicsUniversity of Adelaide Adelaide South Australia 5005 Australia
| | - Jordi Sort
- Institució Catalana de Recerca i Estudis Avançats (ICREA) and Departament de FísicaUniversitat Autònoma de Barcelona 08193 Bellaterra Spain
| | - Bradley J. Nelson
- Multi-Scale Robotics Lab (MSRL)Institute of Robotics and Intelligent Systems (IRIS)ETH Zurich Tannenstrasse 3 8092 Zurich Switzerland
| | - Salvador Pané
- Multi-Scale Robotics Lab (MSRL)Institute of Robotics and Intelligent Systems (IRIS)ETH Zurich Tannenstrasse 3 8092 Zurich Switzerland
| | - Josep Puigmartí‐Luis
- Institute of Chemical and BioengineeringETH Zurich Vladimir Prelog Weg 1 8093 Zurich Switzerland
| |
Collapse
|
19
|
Abstract
Empty spaces are abhorred by nature, which immediately rushes in to fill the void. Humans have learnt pretty well how to make ordered empty nanocontainers, and to get useful products out of them. When such an order is imparted to molecules, new properties may appear, often yielding advanced applications. This review illustrates how the organized void space inherently present in various materials: zeolites, clathrates, mesoporous silica/organosilica, and metal organic frameworks (MOF), for example, can be exploited to create confined, organized, and self-assembled supramolecular structures of low dimensionality. Features of the confining matrices relevant to organization are presented with special focus on molecular-level aspects. Selected examples of confined supramolecular assemblies - from small molecules to quantum dots or luminescent species - are aimed to show the complexity and potential of this approach. Natural confinement (minerals) and hyperconfinement (high pressure) provide further opportunities to understand and master the atomistic-level interactions governing supramolecular organization under nanospace restrictions.
Collapse
Affiliation(s)
- Gloria Tabacchi
- Department of Science and High Technology, University of Insubria, Via Valleggio, 9 I-22100, Como, Italy
| |
Collapse
|