1
|
Peng J, Liao C, Bauer C, Seebeck FP. Fluorinated
S
‐Adenosylmethionine as a Reagent for Enzyme‐Catalyzed Fluoromethylation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jiaming Peng
- Department of Chemistry University of Basel Mattenstrasse 24a 4002 Basel Switzerland
| | - Cangsong Liao
- Department of Chemistry University of Basel Mattenstrasse 24a 4002 Basel Switzerland
| | - Carsten Bauer
- Department of Chemistry University of Basel Mattenstrasse 24a 4002 Basel Switzerland
| | - Florian P. Seebeck
- Department of Chemistry University of Basel Mattenstrasse 24a 4002 Basel Switzerland
| |
Collapse
|
2
|
Peng J, Liao C, Bauer C, Seebeck FP. Fluorinated S-Adenosylmethionine as a Reagent for Enzyme-Catalyzed Fluoromethylation. Angew Chem Int Ed Engl 2021; 60:27178-27183. [PMID: 34597444 DOI: 10.1002/anie.202108802] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Indexed: 01/15/2023]
Abstract
Strategic replacement of protons with fluorine atoms or functional groups with fluorine-containing fragments has proven a powerful strategy to optimize the activity of therapeutic compounds. For this reason, the synthetic chemistry of organofluorides has been the subject of intense development and innovation for many years. By comparison, the literature on fluorine biocatalysis still makes for a slim chapter. Herein we introduce S-adenosylmethionine (SAM) dependent methyltransferases as a new tool for the production of fluorinated compounds. We demonstrate the ability of halide methyltransferases to form fluorinated SAM (S-adenosyl-S-(fluoromethyl)-L-homocysteine) from S-adenosylhomocysteine and fluoromethyliodide. Fluorinated SAM (F-SAM) is too unstable for isolation, but is accepted as a substrate by C-, N- and O-specific methyltransferases for enzyme-catalyzed fluoromethylation of small molecules.
Collapse
Affiliation(s)
- Jiaming Peng
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - Cangsong Liao
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - Carsten Bauer
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - Florian P Seebeck
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| |
Collapse
|
3
|
Ma S, Chen H, Li H, Ji X, Deng Z, Ding W, Zhang Q. Post-Translational Formation of Aminomalonate by a Promiscuous Peptide-Modifying Radical SAM Enzyme. Angew Chem Int Ed Engl 2021; 60:19957-19964. [PMID: 34164914 DOI: 10.1002/anie.202107192] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/23/2021] [Indexed: 11/12/2022]
Abstract
Aminomalonate (Ama) is a widespread structural motif in Nature, whereas its biosynthetic route is only partially understood. In this study, we show that a radical S-adenosylmethionine (rSAM) enzyme involved in cyclophane biosynthesis exhibits remarkable catalytic promiscuity. This enzyme, named three-residue cyclophane forming enzyme (3-CyFE), mainly produces cyclophane in vivo, whereas it produces formylglycine (FGly) as a major product and barely produce cyclophane in vitro. Importantly, the enzyme can further oxidize FGly to produce Ama. Bioinformatic study revealed that 3-CyFEs have evolved from a common ancestor with anaerobic sulfatase maturases (anSMEs), and possess a similar set of catalytic residues with anSMEs. Remarkably, the enzyme does not need leader peptide for activity and is fully active on a truncated peptide containing only 5 amino acids of the core sequence. Our work discloses the first ribosomal path towards Ama formation, providing a possible hint for the rich occurrence of Ama in Nature.
Collapse
Affiliation(s)
- Suze Ma
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Heng Chen
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - He Li
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Xinjian Ji
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Ding
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qi Zhang
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| |
Collapse
|
4
|
Ma S, Chen H, Li H, Ji X, Deng Z, Ding W, Zhang Q. Post‐Translational Formation of Aminomalonate by a Promiscuous Peptide‐Modifying Radical SAM Enzyme. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Suze Ma
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Heng Chen
- Department of Chemistry Fudan University Shanghai 200433 China
| | - He Li
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Xinjian Ji
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology Shanghai Jiao Tong University Shanghai 200240 China
| | - Wei Ding
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology Shanghai Jiao Tong University Shanghai 200240 China
| | - Qi Zhang
- Department of Chemistry Fudan University Shanghai 200433 China
| |
Collapse
|
5
|
Cheng J, Ji W, Ma S, Ji X, Deng Z, Ding W, Zhang Q. Characterization and Mechanistic Study of the Radical SAM Enzyme ArsS Involved in Arsenosugar Biosynthesis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jinduo Cheng
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Wenjuan Ji
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Suze Ma
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Xinjian Ji
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism School of Life Sciences & Biotechnology Shanghai Jiao Tong University Shanghai 200240 China
| | - Wei Ding
- State Key Laboratory of Microbial Metabolism School of Life Sciences & Biotechnology Shanghai Jiao Tong University Shanghai 200240 China
| | - Qi Zhang
- Department of Chemistry Fudan University Shanghai 200433 China
| |
Collapse
|
6
|
Cheng J, Ji W, Ma S, Ji X, Deng Z, Ding W, Zhang Q. Characterization and Mechanistic Study of the Radical SAM Enzyme ArsS Involved in Arsenosugar Biosynthesis. Angew Chem Int Ed Engl 2021; 60:7570-7575. [PMID: 33427387 DOI: 10.1002/anie.202015177] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/07/2021] [Indexed: 12/18/2022]
Abstract
Arsenosugars are a group of arsenic-containing ribosides that are found predominantly in marine algae but also in terrestrial organisms. It has been proposed that arsenosugar biosynthesis involves a key intermediate 5'-deoxy-5'-dimethylarsinoyl-adenosine (DDMAA), but how DDMAA is produced remains elusive. Now, we report characterization of ArsS as a DDMAA synthase, which catalyzes a radical S-adenosylmethionine (SAM)-mediated alkylation (adenosylation) of dimethylarsenite (DMAsIII ) to produce DDMAA. This radical-mediated reaction is redox neutral, and multiple turnover can be achieved without external reductant. Phylogenomic and biochemical analyses revealed that DDMAA synthases are widespread in distinct bacterial phyla with similar catalytic efficiencies; these enzymes likely originated from cyanobacteria. This study reveals a key step in arsenosugar biosynthesis and also a new paradigm in radical SAM chemistry, highlighting the catalytic diversity of this superfamily of enzymes.
Collapse
Affiliation(s)
- Jinduo Cheng
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Wenjuan Ji
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Suze Ma
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Xinjian Ji
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Ding
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qi Zhang
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| |
Collapse
|
7
|
Impano S, Yang H, Shepard EM, Swimley R, Pagnier A, Broderick WE, Hoffman BM, Broderick JB. S-Adenosyl-l-ethionine is a Catalytically Competent Analog of S-Adenosyl-l-methione (SAM) in the Radical SAM Enzyme HydG. Angew Chem Int Ed Engl 2021; 60:4666-4672. [PMID: 33935588 PMCID: PMC8081114 DOI: 10.1002/anie.202014337] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Indexed: 01/02/2023]
Abstract
Radical S-adenosyl-l-methionine (SAM) enzymes initiate biological radical reactions with the 5'-deoxyadenosyl radical (5'-dAdo•). A [4Fe-4S]+ cluster reductively cleaves SAM to form the Ω organometallic intermediate in which the 5'-deoxyadenosyl moiety is directly bound to the unique iron of the [4Fe-4S] cluster, with subsequent liberation of 5'-dAdo•. Here we present synthesis of the SAM analog S-adenosyl-l-ethionine (SAE) and show SAE is a mechanistically-equivalent SAM-alternative for HydG, both supporting enzymatic turnover of substrate tyrosine and forming the organometallic intermediate Ω. Photolysis of SAE bound to HydG forms an ethyl radical trapped in the active site. The ethyl radical withstands prolonged storage at 77 K and its EPR signal is only partially lost upon annealing at 100 K, making it significantly less reactive than the methyl radical formed by SAM photolysis. Upon annealing above 77K, the ethyl radical adds to the [4Fe-4S]2+ cluster, generating an ethyl-[4Fe-4S]3+ organometallic species termed ΩE.
Collapse
Affiliation(s)
- Stella Impano
- Department of Chemistry & Biochemistry, ontana State University, ozeman, MT. USA. 59717
| | - Hao Yang
- Department of Chemistry, Northwestern University, Evanston, IL. USA 60208
| | - Eric M Shepard
- Department of Chemistry & Biochemistry, ontana State University, ozeman, MT. USA. 59717
| | - Ryan Swimley
- Department of Chemistry & Biochemistry, ontana State University, ozeman, MT. USA. 59717
| | - Adrien Pagnier
- Department of Chemistry & Biochemistry, ontana State University, ozeman, MT. USA. 59717
| | - William E Broderick
- Department of Chemistry & Biochemistry, ontana State University, ozeman, MT. USA. 59717
| | - Brian M Hoffman
- Department of Chemistry & Biochemistry, ontana State University, ozeman, MT. USA. 59717
| | - Joan B Broderick
- Department of Chemistry & Biochemistry, ontana State University, ozeman, MT. USA. 59717
| |
Collapse
|
8
|
Impano S, Yang H, Shepard EM, Swimley R, Pagnier A, Broderick WE, Hoffman BM, Broderick JB. S
‐Adenosyl‐
l
‐ethionine is a Catalytically Competent Analog of
S
‐Adenosyl‐
l
‐methionine (SAM) in the Radical SAM Enzyme HydG. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Stella Impano
- Department of Chemistry & Biochemistry Montana State University Bozeman MT 59717 USA
| | - Hao Yang
- Department of Chemistry Northwestern University Evanston IL 60208 USA
| | - Eric M. Shepard
- Department of Chemistry & Biochemistry Montana State University Bozeman MT 59717 USA
| | - Ryan Swimley
- Department of Chemistry & Biochemistry Montana State University Bozeman MT 59717 USA
| | - Adrien Pagnier
- Department of Chemistry & Biochemistry Montana State University Bozeman MT 59717 USA
| | - William E. Broderick
- Department of Chemistry & Biochemistry Montana State University Bozeman MT 59717 USA
| | - Brian M. Hoffman
- Department of Chemistry Northwestern University Evanston IL 60208 USA
| | - Joan B. Broderick
- Department of Chemistry & Biochemistry Montana State University Bozeman MT 59717 USA
| |
Collapse
|
9
|
Ebrahimi KH. Nanofactories for Controlled Synthesis and Delivery of Nucleoside Analogue Therapeutics. Chembiochem 2020; 21:3186-3188. [PMID: 32964558 DOI: 10.1002/cbic.202000382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/10/2020] [Indexed: 12/15/2022]
Abstract
The ultimate nanomedicine will be a cell-like machinery capable of reaching a specific target in the body and performing a desired therapeutic action in a controlled fashion. To make such machinery a reality, we need to combine fundamental knowledge and technological developments in different areas including polymer chemistry, biology, enzymology, and biochemical engineering. In this viewpoint, I put forward my vision of creating a nanofactory as a step towards developing cell-like nanomedicines. To make the proposed nanofactory a reality there are many challenges ahead. I propose plausible solutions to address some of the main challenges.
Collapse
Affiliation(s)
- Kourosh H Ebrahimi
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, South Parks Road, OX1 3QR, Oxford
| |
Collapse
|
10
|
Ji W, Ji X, Zhang Q, Mandalapu D, Deng Z, Ding W, Sun P, Zhang Q. Sulfonium‐Based Homolytic Substitution Observed for the Radical SAM Enzyme HemN. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Wenjuan Ji
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Xinjian Ji
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Qi Zhang
- Department of Chemistry Fudan University Shanghai 200433 China
| | | | - Zixin Deng
- State Key Laboratory of Microbial Metabolism School of Life Sciences & Biotechnology Shanghai Jiao Tong University Shanghai 200240 China
| | - Wei Ding
- State Key Laboratory of Microbial Metabolism School of Life Sciences & Biotechnology Shanghai Jiao Tong University Shanghai 200240 China
| | - Peng Sun
- School of Pharmacy Second Military Medical University Shanghai 200433 China
| | - Qi Zhang
- Department of Chemistry Fudan University Shanghai 200433 China
| |
Collapse
|
11
|
Ji W, Ji X, Zhang Q, Mandalapu D, Deng Z, Ding W, Sun P, Zhang Q. Sulfonium‐Based Homolytic Substitution Observed for the Radical SAM Enzyme HemN. Angew Chem Int Ed Engl 2020; 59:8880-8884. [DOI: 10.1002/anie.202000812] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Wenjuan Ji
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Xinjian Ji
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Qi Zhang
- Department of Chemistry Fudan University Shanghai 200433 China
| | | | - Zixin Deng
- State Key Laboratory of Microbial Metabolism School of Life Sciences & Biotechnology Shanghai Jiao Tong University Shanghai 200240 China
| | - Wei Ding
- State Key Laboratory of Microbial Metabolism School of Life Sciences & Biotechnology Shanghai Jiao Tong University Shanghai 200240 China
| | - Peng Sun
- School of Pharmacy Second Military Medical University Shanghai 200433 China
| | - Qi Zhang
- Department of Chemistry Fudan University Shanghai 200433 China
| |
Collapse
|
12
|
Revisiting the Mechanism of the Anaerobic Coproporphyrinogen III Oxidase HemN. Angew Chem Int Ed Engl 2019; 58:6235-6238. [DOI: 10.1002/anie.201814708] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/13/2019] [Indexed: 12/26/2022]
|
13
|
Ji X, Mo T, Liu W, Ding W, Deng Z, Zhang Q. Revisiting the Mechanism of the Anaerobic Coproporphyrinogen III Oxidase HemN. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814708] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Xinjian Ji
- Department of ChemistryFudan University Shanghai 200433 China
| | - Tianlu Mo
- Department of ChemistryFudan University Shanghai 200433 China
| | - Wan‐Qiu Liu
- Department of ChemistryFudan University Shanghai 200433 China
| | - Wei Ding
- State Key Laboratory of Microbial MetabolismSchool of Life Sciences & BiotechnologyShanghai Jiao Tong University Shanghai 200240 China
| | - Zixin Deng
- State Key Laboratory of Microbial MetabolismSchool of Life Sciences & BiotechnologyShanghai Jiao Tong University Shanghai 200240 China
| | - Qi Zhang
- Department of ChemistryFudan University Shanghai 200433 China
| |
Collapse
|