1
|
Boucher A, Jones G, Roldan A. Toward a new definition of surface energy for late transition metals. Phys Chem Chem Phys 2023; 25:1977-1986. [PMID: 36541443 DOI: 10.1039/d2cp04024g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Surface energy is a top-importance stability descriptor of transition metal-based catalysts. Here, we combined density functional theory (DFT) calculations and a tiling scheme measuring surface areas of metal structures to develop a simple computational model predicting the average surface energy of metal structures independently of their shape. The metals considered are W, Ru, Co, Ir, Ni, Pd, Pt, Cu, Ag and Au. Lorentzian trends derived from the DFT data proved effective at predicting the surface energy of metallic surfaces but not for metal clusters. We used machine-learning protocols to build an algorithm that improves the Lorentzian trend's accuracy and is able to predict the surface energies of metal surfaces of any crystal structure, i.e., face-centred cubic, hexagonal close-packed, and body-centred cubic, but also of nanostructures and sub-nanometer clusters. The machine-learning neural network takes easy-to-compute geometric features to predict metallic moieties surface energies with a mean absolute error of 0.091 J m-2 and an R2 score of 0.97.
Collapse
Affiliation(s)
- Alexandre Boucher
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Wales, UK.
| | - Glenn Jones
- Johnson Matthey Technology Center, Blounts Ct Rd, Sonning Common, Reading, RG4 9NH, UK
| | - Alberto Roldan
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Wales, UK.
| |
Collapse
|
2
|
Ou Y, Li S, Wang F, Duan X, Yuan W, Yang H, Zhang Z, Wang Y. Reversible transformation between terrace and step sites of Pt nanoparticles on titanium under CO and O2 environments. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63958-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
3
|
Saini MK, Kumar S, Li H, Babu SA, Saravanamurugan S. Advances in the Catalytic Reductive Amination of Furfural to Furfural Amine: The Momentous Role of Active Metal Sites. CHEMSUSCHEM 2022; 15:e202200107. [PMID: 35171526 DOI: 10.1002/cssc.202200107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/15/2022] [Indexed: 06/14/2023]
Abstract
One-pot synthesis of sustainable primary amines by catalytic reductive amination of bio-based carbonyl compounds with NH3 and H2 is emerging as a promising and robust approach. The primary amines, especially furfuryl amine (FUA) derived from furfural (FUR), with a wide range of applications from pharmaceuticals to agrochemicals, have attracted much attention due to their versatility. This Review is majorly comprised of two segments on the reductive amination of FUR to FUA, one with precious (Ru, Pd, Rh) and the other with non-precious (Co, Ni) metals on different supports and in various solvent systems in the presence of NH3 and H2 . The active metal sites generated on multiple supports are accentuated with experimental evidence based on CO-diffuse reflectance infrared Fourier-transform spectroscopy, H2 temperature-programmed reduction, X-ray photoelectron spectroscopy, and calorimetry. Moreover, this Review comprehensively describes the role of acidic and basic support for the metal on the yield of FUA. Overall, this Review provides an insight into how to design and develop an efficiently robust catalyst for the selective reductive amination of a broad spectrum of carbonyl compounds to corresponding amines.
Collapse
Affiliation(s)
- Ms Kanika Saini
- Laboratory of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), Mohali, 140 306, Punjab, India
| | - Sahil Kumar
- Laboratory of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), Mohali, 140 306, Punjab, India
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, P. R. China
| | - Srinivasarao Arulananda Babu
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81 (Knowledge City), Mohali, 140 306, Punjab, India
| | - Shunmugavel Saravanamurugan
- Laboratory of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), Mohali, 140 306, Punjab, India
| |
Collapse
|
4
|
Fujita M, Yamamoto A, Tsuchiya N, Yoshida H. Hydrogen Adsorption/Desorption Isotherms on Supported Platinum Nanoparticles Determined by in‐situ XAS and ΔXANES Analysis. ChemCatChem 2021. [DOI: 10.1002/cctc.202101709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Masami Fujita
- Kyoto University: Kyoto Daigaku Graduate School of Human and Environmental Studies 606-8501 Kyoto JAPAN
| | - Akira Yamamoto
- Kyoto University: Kyoto Daigaku Graduate School of Human and Environmental Studies #219 Building 2, Yoshida South Campus, Yoshida-Nihonmatsu-cho, Sakyo-ku 606-8501 Kyoto JAPAN
| | - Naoki Tsuchiya
- Kyoto University: Kyoto Daigaku Graduate School of Human and Environmental Studies 606-8501 Kyoto JAPAN
| | - Hisao Yoshida
- Kyoto University: Kyoto Daigaku Graduate School of Human and Environmental Studies 606-8501 Kyoto JAPAN
| |
Collapse
|
5
|
Su YQ, Xia GJ, Qin Y, Ding S, Wang YG. Lattice oxygen self-spillover on reducible oxide supported metal cluster: the water-gas shift reaction on Cu/CeO 2 catalyst. Chem Sci 2021; 12:8260-8267. [PMID: 34194718 PMCID: PMC8208302 DOI: 10.1039/d1sc01201k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/11/2021] [Indexed: 11/21/2022] Open
Abstract
In this work we have tackled one of the most challenging problems in nanocatalysis namely understanding the role of reducible oxide supports in metal catalyzed reactions. As a prototypical example, the very well-studied water gas shift reaction catalyzed by CeO2 supported Cu nanoclusters is chosen to probe how the reducible oxide support modifies the catalyst structures, catalytically active sites and even the reaction mechanisms. By employing density functional theory calculations in conjunction with a genetic algorithm and ab initio molecular dynamics simulations, we have identified an unprecedented spillover of the surface lattice oxygen from the ceria support to the Cu cluster, which is rarely considered previously but may widely exist in oxide supported metal catalysts under realistic conditions. The oxygen spillover causes a highly energetic preference of the monolayered configuration of the supported Cu nanocluster, compared to multilayered configurations. Due to the strong metal-oxide interaction, after the O spillover the monolayered cluster is highly oxidized by transferring electrons to the Ce 4f orbitals. The water-gas-shift reaction is further found to more favorably take place on the supported copper monolayer than the copper-ceria periphery, where the on-site oxygen and the adjacent oxidized Cu sites account for the catalytically active sites, synergistically facilitating the water dissociation and the carboxyl formation. The present work provides mechanistic insights into the strong metal-support interaction and its role in catalytic reactions, which may pave a way towards the rational design of metal-oxide catalysts with promising stability, dispersion and catalytic activity.
Collapse
Affiliation(s)
- Ya-Qiong Su
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen Guangdong 518055 China
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University Xi'an 710049 China
- Laboratory of Inorganic Materials and Catalysis, Schuit Institute of Catalysis, Eindhoven University of Technology P. O. Box 513 5600 MB Eindhoven The Netherlands
| | - Guang-Jie Xia
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Yanyang Qin
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University Xi'an 710049 China
| | - Shujiang Ding
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University Xi'an 710049 China
| | - Yang-Gang Wang
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
6
|
Straß‐Eifert A, Sheppard TL, Damsgaard CD, Grunwaldt J, Güttel R. Stability of Cobalt Particles In and Outside HZSM‐5 under CO Hydrogenation Conditions Studied by
ex situ
and
in situ
Electron Microscopy. ChemCatChem 2021. [DOI: 10.1002/cctc.202001533] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Angela Straß‐Eifert
- Institute of Chemical Engineering Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Thomas L. Sheppard
- Institute for Chemical Technology and Polymer Chemistry Karlsruhe Institute of Technology Engesserstr. 20 76131 Karlsruhe Germany
- Institute of Catalysis Research and Technology Karlsruhe Institute of Technology Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Christian D. Damsgaard
- DTU Nanolab and DTU Physics Technical University of Denmark Fysikvej – Building 307 2800 Kongens Lyngby Denmark
| | - Jan‐Dierk Grunwaldt
- Institute for Chemical Technology and Polymer Chemistry Karlsruhe Institute of Technology Engesserstr. 20 76131 Karlsruhe Germany
- Institute of Catalysis Research and Technology Karlsruhe Institute of Technology Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Robert Güttel
- Institute of Chemical Engineering Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| |
Collapse
|
7
|
Zhang Z, Zandkarimi B, Alexandrova AN. Ensembles of Metastable States Govern Heterogeneous Catalysis on Dynamic Interfaces. Acc Chem Res 2020; 53:447-458. [PMID: 31977181 DOI: 10.1021/acs.accounts.9b00531] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Heterogeneous catalysis is at the heart of the chemical industry. Being able to tune and design efficient catalysts for processes of interest is of the utmost importance, and for this, a molecular-level understanding of heterogeneous catalysts is the first step and indeed a prime focus of modern catalysis research. For a long time, the single most thermodynamically stable structure of the catalytic interface attained under the reaction conditions had been envisioned as the reactive phase. However, some catalytic interfaces continue to undergo structural dynamics in the steady state, triggered by high temperatures and pressures and binding and changing reagents. Among particularly dynamic interfaces are such widely used catalysts as crystalline and amorphous surfaced supporting (sub)nanometallic clusters. Recently, it became clear that this dynamic fluxionality causes the supported clusters to populate many distinct structural and stoichiometric states under catalytic conditions. Hence, the catalytic interface should be viewed as an evolving statistical ensemble of many structures (rather than one structure). Every member in the ensemble contributes to the properties of the catalyst differently, in proportion to its probability of being populated. This new notion flips the established paradigm and calls for a new theory, new modeling approaches, operando measurements, and updated design strategies. The statistical ensemble nature of surface-supported subnanocluster catalysts can be exemplified by oxide-supported and adsorbate-covered Pt, Pd, Cu, and CuPd clusters, which are catalytic toward oxidative and nonoxidative dehydrogenation. They have access to a variety of 3D and quasi-2D shapes. The compositions of their thermal ensembles are dependent on the cluster size, leading to size-specific catalytic activities and the famous "every atom counts" phenomenon. The support and adsorbates affect catalyst structures, and the state of the reacting species causes the ensemble to change in every reaction intermediate. The most stable member of the ensemble dominates the thermodynamic properties of the corresponding intermediate, whereas the kinetics can be determined by more active but less populated metastable catalyst states, and that suggests that many earlier studies might have overlooked the actual active sites. Both effects depend on the relative time scales of catalyst restructuring and reaction dynamics. The catalyst may routinely operate off-equilibrium. Ensemble phenomena lead to surprising exceptions from established rules of catalysis, such as scaling relations and Arrhenius behavior. Catalyst deactivation is also an ensemble property, and its extent of mitigation can be predicted through the new paradigm. These findings were enabled by advances in theory, such as global optimization and subsequent utilization of multiple local minima and pathways sampling as well as operando catalyst characterization. The fact that the per-site and per-species resolution is needed for the description and prediction of catalyst properties gives theory the central role in catalysis research, as most experiments provide ensemble-average information and cannot detect the crucial minority species that may be responsible for the catalytic activity.
Collapse
Affiliation(s)
- Zisheng Zhang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Borna Zandkarimi
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Anastassia N. Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
- California NanoSystems Institute, 570 Westwood Plaza, Los Angeles, California 90095, United States
| |
Collapse
|
8
|
Zhu B, Meng J, Yuan W, Zhang X, Yang H, Wang Y, Gao Y. Umformung von Metallnanopartikeln unter Reaktionsbedingungen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201906799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Beien Zhu
- Shanghai Advanced Research InstituteChinese Academy of Sciences 201210 Shanghai China
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
| | - Jun Meng
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wentao Yuan
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Xun Zhang
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Hangsheng Yang
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Yong Wang
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Yi Gao
- Shanghai Advanced Research InstituteChinese Academy of Sciences 201210 Shanghai China
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
| |
Collapse
|
9
|
Zhu B, Meng J, Yuan W, Zhang X, Yang H, Wang Y, Gao Y. Reshaping of Metal Nanoparticles Under Reaction Conditions. Angew Chem Int Ed Engl 2020; 59:2171-2180. [DOI: 10.1002/anie.201906799] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/10/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Beien Zhu
- Shanghai Advanced Research InstituteChinese Academy of Sciences 201210 Shanghai China
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
| | - Jun Meng
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wentao Yuan
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Xun Zhang
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Hangsheng Yang
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Yong Wang
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Yi Gao
- Shanghai Advanced Research InstituteChinese Academy of Sciences 201210 Shanghai China
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
| |
Collapse
|
10
|
Real‐Time Atomic‐Scale Visualization of Reversible Copper Surface Activation during the CO Oxidation Reaction. Angew Chem Int Ed Engl 2020; 59:2505-2509. [DOI: 10.1002/anie.201915024] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Indexed: 11/07/2022]
|
11
|
Luo L, Nian Y, Wang S, Dong Z, He Y, Han Y, Wang C. Real‐Time Atomic‐Scale Visualization of Reversible Copper Surface Activation during the CO Oxidation Reaction. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201915024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Langli Luo
- Institute of Molecular PlusTianjin Key Laboratory of Molecular Optoelectronic SciencesDepartment of ChemistryTianjin University 92 Weijin Road Tianjin 300072 China
| | - Yao Nian
- School of Chemical Engineering and TechnologyTianjin University and Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) Tianjin 300350 China
| | - Shuangbao Wang
- School of Physical Science and TechnologyGuangxi University Nanning 530004 China
| | - Zejian Dong
- Institute of Molecular PlusTianjin Key Laboratory of Molecular Optoelectronic SciencesDepartment of ChemistryTianjin University 92 Weijin Road Tianjin 300072 China
| | - Yang He
- Environmental Molecular Sciences LaboratoryPacific Northwest National Laboratory 902 Battelle Blvd Richland WA 99354 USA
| | - You Han
- School of Chemical Engineering and TechnologyTianjin University and Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) Tianjin 300350 China
| | - Chongmin Wang
- Environmental Molecular Sciences LaboratoryPacific Northwest National Laboratory 902 Battelle Blvd Richland WA 99354 USA
| |
Collapse
|
12
|
Guo Y, Guo X, Song C, Han X, Liu H, Zhao Z. Capsule-Structured Copper-Zinc Catalyst for Highly Efficient Hydrogenation of Carbon Dioxide to Methanol. CHEMSUSCHEM 2019; 12:4916-4926. [PMID: 31560446 DOI: 10.1002/cssc.201902485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/26/2019] [Indexed: 06/10/2023]
Abstract
To develop a new and efficient CO2 -to-methanol catalyst is of extreme significance but still remains a challenge. Herein, an innovative indirect two-step strategy is reported to synthesize a highly efficient capsule-structured copper-based CO2 -to-methanol catalyst (CZA-r@CZM). It consists of a structurally reconstructed millimeter-sized Cu/ZnO/Al2 O3 core (CZA-r) with intensified Cu-ZnO interactions, which is made by a facile hydrothermal treatment in an alkaline aqueous solution, and a Cu/ZnO/MgO (CZM) shell prepared by an ethylene glycol-assisted physical coating method. The CZA-r core displays 2.7 times higher CO2 hydrogenation activity with 2.0 times higher CO selectivity than the previously reported Cu/ZnO/Al2 O3 (CZA-p), whereas the CZM shell can efficiently catalyze hydrogenation of the as-formed CO from the CZA-r core to methanol as it passes through the shell. As a result, the developed capsule-structured CZA-r@CZM catalyst exhibits 2.4 times higher CO2 conversion with 1.8 times higher turnover frequency and 2.3-fold higher methanol space-time yield than the CZA-p catalyst (729.8 vs. 312.6 gMeOH kgcat -1 h-1 ). In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTs) experiments reveal that the CO2 hydrogenation reaction proceeds through a reverse water-gas shift reaction followed by a CO hydrogenation pathway via an *H3 CO intermediate. This work not only produces an efficient CO2 -to-methanol catalyst, but also opens a new avenue for designing superior catalysts for other consecutive transformations.
Collapse
Affiliation(s)
- Yongle Guo
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P.R. China
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P.R. China
| | - Chunshan Song
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P.R. China
- EMS Energy Institute, PSU-DUT Joint Center for Energy Research and Departments of Energy & Mineral Engineering and Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Xinghua Han
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, P.R. China
| | - Hongyang Liu
- Shenyang Research Center of Material Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P.R. China
| | - Zhongkui Zhao
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P.R. China
| |
Collapse
|
13
|
Pappert K, Loza K, Shviro M, Hagemann U, Heggen M, Dunin-Borkowski RE, Schierholz R, Maeda T, Kaneko K, Epple M. Nanoscopic Porous Iridium/Iridium Dioxide Superstructures (15 nm): Synthesis and Thermal Conversion by In Situ Transmission Electron Microscopy. Chemistry 2019; 25:11048-11057. [PMID: 31140211 DOI: 10.1002/chem.201901623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Indexed: 11/05/2022]
Abstract
Porous particle superstructures of about 15 nm diameter, consisting of ultrasmall nanoparticles of iridium and iridium dioxide, are prepared through the reduction of sodium hexachloridoiridate(+IV) with sodium citrate/sodium borohydride in water. The water-dispersible porous particles contain about 20 wt % poly(N-vinylpyrrolidone) (PVP), which was added for colloidal stabilization. High-resolution transmission electron microscopy confirms the presence of both iridium and iridium dioxide primary particles (1-2 nm) in each porous superstructure. The internal porosity (≈58 vol%) is demonstrated by electron tomography. In situ transmission electron microscopy up to 1000 °C under oxygen, nitrogen, argon/hydrogen (all at 1 bar), and vacuum shows that the porous particles undergo sintering and subsequent compaction upon heating, a process that starts at around 250 °C and is completed at around 800 °C. Finally, well-crystalline iridium dioxide is obtained under all four environments. The catalytic activity of the as-prepared porous superstructures in electrochemical water splitting (oxygen evolution reaction; OER) is reduced considerably upon heating owing to sintering of the pores and loss of internal surface area.
Collapse
Affiliation(s)
- Kevin Pappert
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstr. 5-7, 45117, Essen, Germany
| | - Kateryna Loza
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstr. 5-7, 45117, Essen, Germany
| | - Meital Shviro
- Institute of Energy and Climate Research, Electrochemical Process Engineering (IEK-3), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Ulrich Hagemann
- Interdisciplinary Center for Analytics on the Nanoscale (ICAN) and Center for Nanointegration Duisburg-Essen (CENIDE), University of, Duisburg-Essen, Carl-Benz-Strasse 199, 47057, Duisburg, Germany
| | - Marc Heggen
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Rafal E Dunin-Borkowski
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Roland Schierholz
- Institute of Energy and Climate Research, Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Takuya Maeda
- Department of Materials Science and Engineering, Kyushu University, 744, Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Kenji Kaneko
- Department of Materials Science and Engineering, Kyushu University, 744, Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstr. 5-7, 45117, Essen, Germany
| |
Collapse
|
14
|
Du J, Meng J, Li XY, Zhu B, Gao Y. Multiscale atomistic simulation of metal nanoparticles under working conditions. NANOSCALE ADVANCES 2019; 1:2478-2484. [PMID: 36132725 PMCID: PMC9419150 DOI: 10.1039/c9na00196d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/10/2019] [Indexed: 06/10/2023]
Abstract
With the fast development of in situ experimental methodologies, dramatic structure reconstructions of nanomaterials that only occur under reaction conditions have been discovered in recent years, which are critical for their application in catalysis, biomedicine, and biosensors. A big challenge for theoreticians is thus to establish reliable models to reproduce the experimental observations quantitatively, and further to make predictions beyond experimental conditions. Herein, we briefly summarize the recent theoretical advances involving the quantitative predictions of equilibrium shapes of metal nanoparticles under reaction conditions and the real-time simulations of nanocrystal transformations. The comparisons between the theoretical and experimental results are presented. This minireview not only helps researchers understand the in situ observations at the atomic level, but also is beneficial for prescreening and optimizing the NPs for practical use.
Collapse
Affiliation(s)
- Jifeng Du
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jun Meng
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiao-Yan Li
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Beien Zhu
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences Shanghai 201210 China
| | - Yi Gao
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences Shanghai 201210 China
| |
Collapse
|
15
|
De Vrieze JE, Bremmer GM, Aly M, Navarro V, Thybaut JW, Kooyman PJ, Saeys M. Shape of Cobalt and Platinum Nanoparticles Under a CO Atmosphere: A Combined In Situ TEM and Computational Catalysis Study. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01840] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jenoff E. De Vrieze
- Laboratory for Chemical Technology, Ghent University, Technologiepark 125, B-9052 Ghent, Belgium
| | - G. Marien Bremmer
- Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | - Mostafa Aly
- Laboratory for Chemical Technology, Ghent University, Technologiepark 125, B-9052 Ghent, Belgium
| | - Violeta Navarro
- Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | - Joris W. Thybaut
- Laboratory for Chemical Technology, Ghent University, Technologiepark 125, B-9052 Ghent, Belgium
| | - Patricia J. Kooyman
- Catalysis Institute, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
| | - Mark Saeys
- Laboratory for Chemical Technology, Ghent University, Technologiepark 125, B-9052 Ghent, Belgium
| |
Collapse
|
16
|
De Vrieze JE, Gunasooriya GTKK, Thybaut JW, Saeys M. Operando computational catalysis: shape, structure, and coverage under reaction conditions. Curr Opin Chem Eng 2019. [DOI: 10.1016/j.coche.2019.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Niu Y, Liu X, Wang Y, Zhou S, Lv Z, Zhang L, Shi W, Li Y, Zhang W, Su DS, Zhang B. Visualizing Formation of Intermetallic PdZn in a Palladium/Zinc Oxide Catalyst: Interfacial Fertilization by PdH
x. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yiming Niu
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of Sciences Shenyang 110016 China
- School of Materials Science and EngineeringUniversity of Science and Technology of China Shenyang 110016 China
| | - Xi Liu
- State Key Laboratory of Coal ConversionInstitute of Coal ChemistryChinese Academy of Sciences Taiyuan 030001 China
- SynCat@BeijingSynfuels China Technology Co., Ltd. Beijing 101407 China
| | - Yongzhao Wang
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of Sciences Shenyang 110016 China
- School of Materials Science and EngineeringUniversity of Science and Technology of China Shenyang 110016 China
| | - Song Zhou
- State Key Laboratory of Coal ConversionInstitute of Coal ChemistryChinese Academy of Sciences Taiyuan 030001 China
- SynCat@BeijingSynfuels China Technology Co., Ltd. Beijing 101407 China
- School of Chemistry and Chemical EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Zhengang Lv
- State Key Laboratory of Coal ConversionInstitute of Coal ChemistryChinese Academy of Sciences Taiyuan 030001 China
- SynCat@BeijingSynfuels China Technology Co., Ltd. Beijing 101407 China
| | - Liyun Zhang
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of Sciences Shenyang 110016 China
| | - Wen Shi
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of Sciences Shenyang 110016 China
- School of Materials Science and EngineeringUniversity of Science and Technology of China Shenyang 110016 China
| | - Yongwang Li
- State Key Laboratory of Coal ConversionInstitute of Coal ChemistryChinese Academy of Sciences Taiyuan 030001 China
- SynCat@BeijingSynfuels China Technology Co., Ltd. Beijing 101407 China
| | - Wei Zhang
- School of Materials Science & EngineeringElectron Microscopy CenterKey Laboratory of Automobile Materials MOEJilin University Changchun 130012 China
| | - Dang Sheng Su
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of Sciences Shenyang 110016 China
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of Sciences Shenyang 110016 China
| |
Collapse
|
18
|
Niu Y, Liu X, Wang Y, Zhou S, Lv Z, Zhang L, Shi W, Li Y, Zhang W, Su DS, Zhang B. Visualizing Formation of Intermetallic PdZn in a Palladium/Zinc Oxide Catalyst: Interfacial Fertilization by PdH x. Angew Chem Int Ed Engl 2019; 58:4232-4237. [PMID: 30650222 DOI: 10.1002/anie.201812292] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/05/2018] [Indexed: 01/01/2023]
Abstract
Controllable synthesis of well-defined supported intermetallic catalysts is desirable because of their unique properties in physical chemistry. To accurately pinpoint the evolution of such materials at an atomic-scale, especially clarification of the initial state under a particular chemical environment, will facilitate rational design and optimal synthesis of such catalysts. The dynamic formation of a ZnO-supported PdZn catalyst is presented, whereby detailed analyses of in situ transmission electron microscopy, electron energy-loss spectroscopy, and in situ X-ray diffraction are combined to form a nanoscale understanding of PdZn phase transitions under realistic catalytic conditions. Remarkably, introduction of atoms (H and Zn in sequence) into the Pd matrix was initially observed. The resultant PdHx is an intermediate phase in the intermetallic formation process. The evolution of PdHx in the PdZn catalyst initializes at the PdHx /ZnO interfaces, and proceeds along the PdHx ⟨111⟩ direction.
Collapse
Affiliation(s)
- Yiming Niu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China.,School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China
| | - Xi Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.,SynCat@Beijing, Synfuels China Technology Co., Ltd., Beijing, 101407, China
| | - Yongzhao Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China.,School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China
| | - Song Zhou
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.,SynCat@Beijing, Synfuels China Technology Co., Ltd., Beijing, 101407, China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengang Lv
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.,SynCat@Beijing, Synfuels China Technology Co., Ltd., Beijing, 101407, China
| | - Liyun Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Wen Shi
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China.,School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China
| | - Yongwang Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.,SynCat@Beijing, Synfuels China Technology Co., Ltd., Beijing, 101407, China
| | - Wei Zhang
- School of Materials Science & Engineering, Electron Microscopy Center, Key Laboratory of Automobile Materials MOE, Jilin University, Changchun, 130012, China
| | - Dang Sheng Su
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| |
Collapse
|
19
|
Yuan W, Zhang D, Ou Y, Fang K, Zhu B, Yang H, Hansen TW, Wagner JB, Zhang Z, Gao Y, Wang Y. Direct In Situ TEM Visualization and Insight into the Facet‐Dependent Sintering Behaviors of Gold on TiO
2. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811933] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Wentao Yuan
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Dawei Zhang
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
| | - Yang Ou
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Ke Fang
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Beien Zhu
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
| | - Hangsheng Yang
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Thomas W. Hansen
- Center for Electron NanoscopyTechnical University of Denmark 2800 Kgs. Lyngby Denmark
| | - Jakob B. Wagner
- Center for Electron NanoscopyTechnical University of Denmark 2800 Kgs. Lyngby Denmark
| | - Ze Zhang
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Yi Gao
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
| | - Yong Wang
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| |
Collapse
|
20
|
Yuan W, Zhang D, Ou Y, Fang K, Zhu B, Yang H, Hansen TW, Wagner JB, Zhang Z, Gao Y, Wang Y. Direct In Situ TEM Visualization and Insight into the Facet-Dependent Sintering Behaviors of Gold on TiO 2. Angew Chem Int Ed Engl 2018; 57:16827-16831. [PMID: 30397982 DOI: 10.1002/anie.201811933] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Indexed: 11/09/2022]
Abstract
Preventing sintering of supported nanocatalysts is an important issue in nanocatalysis. A feasible way is to choose a suitable support. However, whether the metal-support interactions promote or prevent the sintering has not been fully identified. Now, completely different sintering behaviors of Au nanoparticles on distinct anatase TiO2 surfaces have been determined by in situ TEM. The full in situ sintering processes of Au nanoparticles were visualized on TiO2 (101) surface, which coupled the Ostwald ripening and particle migration coalescence. In contrast, no sintering of Au on TiO2 anatase (001) surface was observed under the same conditions. This facet-dependent sintering mechanism is fully explained by the density function theory calculations. This work not only offers direct evidence of the important role of supports in the sintering process, but also provides insightful information for the design of sintering-resistant nanocatalysts.
Collapse
Affiliation(s)
- Wentao Yuan
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Dawei Zhang
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Yang Ou
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ke Fang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Beien Zhu
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Hangsheng Yang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Thomas W Hansen
- Center for Electron Nanoscopy, Technical University of Denmark, 2800 Kgs., Lyngby, Denmark
| | - Jakob B Wagner
- Center for Electron Nanoscopy, Technical University of Denmark, 2800 Kgs., Lyngby, Denmark
| | - Ze Zhang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yi Gao
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Yong Wang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|