1
|
Huang LB, Mamiya F, Baaden M, Yashima E, Barboiu M. Self-Assembling Peptide-Appended Metallomacrocycle Pores for Selective Water Translocation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40133-40139. [PMID: 37566758 DOI: 10.1021/acsami.3c09059] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Artificial water channels selectively transport water, excluding all ions. Unimolecular channels have been synthesized via complex synthetic steps. Ideally, simpler compounds requesting less synthetic steps should efficiently lead to selective channels by self-assembly. Herein, we report a self-assembled peptide-bound Ni2+ metallomacrocycle, 1, in which rim-peptide-bound units are connected to a central macrocycle obtained via condensation in the presence of Ni2+ ions. Compound 1 achieves a single-channel permeability up to 107-108 water/s/channel and insignificant ion transport, which is 1 order of magnitude lower than those for aquaporins. Molecular simulations probe that spongelike aggregates can form to generate transient cluster water pathways through the bilayer. Altogether, adaptive metallosupramolecular self-assembly is an efficient and simple way to construct selective channel superstructures.
Collapse
Affiliation(s)
- Li-Bo Huang
- Institut Europeen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, UMR5635, Place E. Bataillon CC047, Montpellier 34095, France
- School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Fumihiko Mamiya
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University Chikusa-ku, Nagoya 464-8603, Japan
| | - Marc Baaden
- Laboratoire de Biochimie Théorique, CNRS, Université Paris Cité, 13 rue Pierre et Marie Curie, Paris F-75005, France
| | - Eiji Yashima
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University Chikusa-ku, Nagoya 464-8603, Japan
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University Chikusa-ku, Nagoya 464-8603, Japan
| | - Mihail Barboiu
- Institut Europeen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, UMR5635, Place E. Bataillon CC047, Montpellier 34095, France
| |
Collapse
|
2
|
Xin P, Xu L, Dong W, Mao L, Guo J, Bi J, Zhang S, Pei Y, Chen CP. Synthetic K + Channels Constructed by Rebuilding the Core Modules of Natural K + Channels in an Artificial System. Angew Chem Int Ed Engl 2023; 62:e202217859. [PMID: 36583482 DOI: 10.1002/anie.202217859] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
Different types of natural K+ channels share similar core modules and cation permeability characteristics. In this study, we have developed novel artificial K+ channels by rebuilding the core modules of natural K+ channels in artificial systems. All the channels displayed high selectivity for K+ over Na+ and exhibited a selectivity sequence of K+ ≈Rb+ during the transport process, which is highly consistent with the cation permeability characteristics of natural K+ channels. More importantly, these artificial channels could be efficiently inserted into cell membranes and mediate the transmembrane transport of K+ , disrupting the cellular K+ homeostasis and eventually triggering the apoptosis of cells. These findings demonstrate that, by rebuilding the core modules of natural K+ channels in artificial systems, the structures, transport behaviors, and physiological functions of natural K+ channels can be mimicked in synthetic channels.
Collapse
Affiliation(s)
- Pengyang Xin
- Pingyuan Laboratory, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Linqi Xu
- Pingyuan Laboratory, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Wenpei Dong
- Pingyuan Laboratory, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Linlin Mao
- Pingyuan Laboratory, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Jingjing Guo
- Engineering Research Centre of Applied Technology on Machine Translation and Artificial Intelligence, Macao Polytechnic University, Macao, 999078, China
| | - Jingjing Bi
- Pingyuan Laboratory, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Shouwei Zhang
- Pingyuan Laboratory, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Yan Pei
- Pingyuan Laboratory, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Chang-Po Chen
- Pingyuan Laboratory, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
3
|
He L, Zhang T, Zhu C, Yan T, Liu J. Crown Ether-Based Ion Transporters in Bilayer Membranes. Chemistry 2023; 29:e202300044. [PMID: 36723493 DOI: 10.1002/chem.202300044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/02/2023]
Abstract
Bilayer membranes that enhance the stability of the cell are essential for cell survival, separating and protecting the interior of the cell from its external environment. Membrane-based channel proteins are crucial for sustaining cellular activities. However, dysfunction of these proteins would induce serial channelopathies, which could be substituted by artificial ion channel analogs. Crown ethers (CEs) are widely studied in the area of artificial ion channels owing to their intrinsic host-guest interaction with different kinds of organic and inorganic ions. Other advantages such as lower price, chemical stability, and easier modification also make CE a research hotspot in the field of synthetic transmembrane nanopores. And numerous CEs-based membrane-active synthetic ion channels were designed and fabricated in the past decades. Herein, the recent progress of CEs-based synthetic ion transporters has been comprehensively summarized in this review, including their design principles, functional mechanisms, controllable properties, and biomedical applications. Furthermore, this review has been concluded by discussing the future opportunities and challenges facing this research field. It is anticipated that this review could offer some inspiration for the future fabrication of novel CEs-derived ion transporters with more advanced structures, properties, and practical applications.
Collapse
Affiliation(s)
- Lei He
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, 311121, Hangzhou, P. R. China
| | - Tianlong Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, 311121, Hangzhou, P. R. China
| | - Canhong Zhu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, 311121, Hangzhou, P. R. China
| | - Tengfei Yan
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, 311121, Hangzhou, P. R. China
| | - Junqiu Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, 311121, Hangzhou, P. R. China
| |
Collapse
|
4
|
Benke BP, Behera H, Madhavan N. Low Molecular Weight Di‐ to Tetrapeptide Transmembrane Cation Transporters. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Bahiru P. Benke
- Department of Chemistry Indian Institute of Technology Madras 600036 Chennai Tamil Nadu India
| | - Harekrushna Behera
- Department of Chemistry Indian Institute of Technology Madras 600036 Chennai Tamil Nadu India
- Department of Chemistry Indian Institute of Technology Bombay 400076 Powai Mumbai India
| | - Nandita Madhavan
- Department of Chemistry Indian Institute of Technology Bombay 400076 Powai Mumbai India
| |
Collapse
|
5
|
Zheng S, Jiang J, Lee A, Barboiu M. A Voltage‐Responsive Synthetic Cl−‐Channel Regulated by pH. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Shao‐Ping Zheng
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| | - Ji‐Jun Jiang
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Arie Lee
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| | - Mihail Barboiu
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| |
Collapse
|
6
|
Zheng S, Jiang J, Lee A, Barboiu M. A Voltage‐Responsive Synthetic Cl−‐Channel Regulated by pH. Angew Chem Int Ed Engl 2020; 59:18920-18926. [DOI: 10.1002/anie.202008393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/10/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Shao‐Ping Zheng
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| | - Ji‐Jun Jiang
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Arie Lee
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| | - Mihail Barboiu
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| |
Collapse
|
7
|
Zheng S, Huang L, Sun Z, Barboiu M. Self‐Assembled Artificial Ion‐Channels toward Natural Selection of Functions. Angew Chem Int Ed Engl 2020; 60:566-597. [DOI: 10.1002/anie.201915287] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Shao‐Ping Zheng
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| | - Li‐Bo Huang
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| | - Zhanhu Sun
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| | - Mihail Barboiu
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| |
Collapse
|
8
|
Zheng S, Huang L, Sun Z, Barboiu M. Selbstorganisierte künstliche Ionenkanäle für die natürliche Selektion von Funktionen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915287] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shao‐Ping Zheng
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier Frankreich
| | - Li‐Bo Huang
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier Frankreich
| | - Zhanhu Sun
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier Frankreich
| | - Mihail Barboiu
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier Frankreich
| |
Collapse
|
9
|
Zheng S, Li Y, Jiang J, van der Lee A, Dumitrescu D, Barboiu M. Self‐Assembled Columnar Triazole Quartets: An Example of Synergistic Hydrogen‐Bonding/Anion–π Interactions. Angew Chem Int Ed Engl 2019; 58:12037-12042. [DOI: 10.1002/anie.201904808] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Shao‐Ping Zheng
- Lehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des MembranesAdaptive Supramolecular Nanosystems GroupUniversity of Montpellier, ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| | - Yu‐Hao Li
- Lehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Ji‐Jun Jiang
- Lehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Arie van der Lee
- Institut Europeen des MembranesAdaptive Supramolecular Nanosystems GroupUniversity of Montpellier, ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| | - Dan Dumitrescu
- XRD2 beamline, Elettra—Sincrotrone Trieste S.C.p.A. Strada Statale 14—km 163,5 in AREA Science Park 34149 Basovizza Trieste Italy
| | - Mihail Barboiu
- Lehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des MembranesAdaptive Supramolecular Nanosystems GroupUniversity of Montpellier, ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| |
Collapse
|
10
|
Zheng S, Li Y, Jiang J, van der Lee A, Dumitrescu D, Barboiu M. Self‐Assembled Columnar Triazole Quartets: An Example of Synergistic Hydrogen‐Bonding/Anion–π Interactions. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904808] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shao‐Ping Zheng
- Lehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des MembranesAdaptive Supramolecular Nanosystems GroupUniversity of Montpellier, ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| | - Yu‐Hao Li
- Lehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Ji‐Jun Jiang
- Lehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Arie van der Lee
- Institut Europeen des MembranesAdaptive Supramolecular Nanosystems GroupUniversity of Montpellier, ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| | - Dan Dumitrescu
- XRD2 beamline, Elettra—Sincrotrone Trieste S.C.p.A. Strada Statale 14—km 163,5 in AREA Science Park 34149 Basovizza Trieste Italy
| | - Mihail Barboiu
- Lehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des MembranesAdaptive Supramolecular Nanosystems GroupUniversity of Montpellier, ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| |
Collapse
|
11
|
García‐Calvo J, Torroba T, Brañas‐Fresnillo V, Perdomo G, Cózar‐Castellano I, Li Y, Legrand Y, Barboiu M. Manipulation of Transmembrane Transport by Synthetic K
+
Ionophore Depsipeptides and Its Implications in Glucose‐Stimulated Insulin Secretion in β‐Cells. Chemistry 2019; 25:9287-9294. [DOI: 10.1002/chem.201901372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Indexed: 12/19/2022]
Affiliation(s)
- José García‐Calvo
- Department of ChemistryFaculty of ScienceUniversity of Burgos 09001 Burgos Spain
| | - Tomás Torroba
- Department of ChemistryFaculty of ScienceUniversity of Burgos 09001 Burgos Spain
| | | | - Germán Perdomo
- Department of Health SciencesSchool of Health SciencesUniversity of Burgos 09001 Burgos Spain
| | - Irene Cózar‐Castellano
- Institute of Molecular Biology and Genetics-IBGMUniversity of Valladolid-CSIC 47003 Valladolid Spain
| | - Yu‐Hao Li
- Adaptive Supramolecular Nanosystems GroupInstitut Européen des Membranes Place Eugène Bataillon, CC047 34095 Montpellier Cedex 5 France
| | - Yves‐Marie Legrand
- Adaptive Supramolecular Nanosystems GroupInstitut Européen des Membranes Place Eugène Bataillon, CC047 34095 Montpellier Cedex 5 France
| | - Mihail Barboiu
- Adaptive Supramolecular Nanosystems GroupInstitut Européen des Membranes Place Eugène Bataillon, CC047 34095 Montpellier Cedex 5 France
| |
Collapse
|
12
|
Xin P, Kong H, Sun Y, Zhao L, Fang H, Zhu H, Jiang T, Guo J, Zhang Q, Dong W, Chen C. Artificial K
+
Channels Formed by Pillararene‐Cyclodextrin Hybrid Molecules: Tuning Cation Selectivity and Generating Membrane Potential. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813797] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Pengyang Xin
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug InnovationKey Laboratory of Green Chemical Media and Reactions of Ministry of EducationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsHenan Normal University Xinxiang 453007 China
| | - Huiyuan Kong
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug InnovationKey Laboratory of Green Chemical Media and Reactions of Ministry of EducationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsHenan Normal University Xinxiang 453007 China
| | - Yonghui Sun
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug InnovationKey Laboratory of Green Chemical Media and Reactions of Ministry of EducationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsHenan Normal University Xinxiang 453007 China
| | - Lingyu Zhao
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug InnovationKey Laboratory of Green Chemical Media and Reactions of Ministry of EducationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsHenan Normal University Xinxiang 453007 China
| | - Haodong Fang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug InnovationKey Laboratory of Green Chemical Media and Reactions of Ministry of EducationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsHenan Normal University Xinxiang 453007 China
| | - Haofeng Zhu
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug InnovationKey Laboratory of Green Chemical Media and Reactions of Ministry of EducationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsHenan Normal University Xinxiang 453007 China
| | - Tao Jiang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug InnovationKey Laboratory of Green Chemical Media and Reactions of Ministry of EducationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsHenan Normal University Xinxiang 453007 China
| | - Jingjing Guo
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug InnovationKey Laboratory of Green Chemical Media and Reactions of Ministry of EducationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsHenan Normal University Xinxiang 453007 China
| | - Qian Zhang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug InnovationKey Laboratory of Green Chemical Media and Reactions of Ministry of EducationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsHenan Normal University Xinxiang 453007 China
| | - Wenpei Dong
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug InnovationKey Laboratory of Green Chemical Media and Reactions of Ministry of EducationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsHenan Normal University Xinxiang 453007 China
| | - Chang‐Po Chen
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug InnovationKey Laboratory of Green Chemical Media and Reactions of Ministry of EducationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsHenan Normal University Xinxiang 453007 China
| |
Collapse
|
13
|
Xin P, Kong H, Sun Y, Zhao L, Fang H, Zhu H, Jiang T, Guo J, Zhang Q, Dong W, Chen CP. Artificial K + Channels Formed by Pillararene-Cyclodextrin Hybrid Molecules: Tuning Cation Selectivity and Generating Membrane Potential. Angew Chem Int Ed Engl 2019; 58:2779-2784. [PMID: 30648810 DOI: 10.1002/anie.201813797] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/14/2019] [Indexed: 01/10/2023]
Abstract
A class of artificial K+ channels formed by pillararene-cyclodextrin hybrid molecules have been designed and synthesized. These channels efficiently inserted into lipid bilayers and displayed high selectivity for K+ over Na+ in fluorescence and electrophysiological experiments. The cation transport selectivity of the artificial channels is tunable by varying the length of the linkers between pillararene and cyclodexrin. The shortest channel showed specific transmembrane transport preference for K+ over all alkali metal ions (selective sequence: K+ > Cs+ > Rb+ > Na+ > Li+ ), and is rarely observed for artificial K+ channels. The high selectivity of this artificial channel for K+ over Na+ ensures specific transmembrane translocation of K+ , and generated stable membrane potential across lipid bilayers.
Collapse
Affiliation(s)
- Pengyang Xin
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, 453007, China
| | - Huiyuan Kong
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, 453007, China
| | - Yonghui Sun
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, 453007, China
| | - Lingyu Zhao
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, 453007, China
| | - Haodong Fang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, 453007, China
| | - Haofeng Zhu
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, 453007, China
| | - Tao Jiang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, 453007, China
| | - Jingjing Guo
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, 453007, China
| | - Qian Zhang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, 453007, China
| | - Wenpei Dong
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, 453007, China
| | - Chang-Po Chen
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|