1
|
Rosa LB, Aires RL, Oliveira LS, Fontes JV, Miguel DC, Abbehausen C. A "Golden Age" for the discovery of new antileishmanial agents: Current status of leishmanicidal gold complexes and prospective targets beyond the trypanothione system. ChemMedChem 2021; 16:1681-1695. [PMID: 33615725 DOI: 10.1002/cmdc.202100022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 12/11/2022]
Abstract
Leishmaniasis is one of the most neglected diseases worldwide and is considered a serious public health issue. The current therapeutic options have several disadvantages that make the search for new therapeutics urgent. Gold compounds are emerging as promising candidates based on encouraging in vitro and limited in vivo results for several AuI and AuIII complexes. The antiparasitic mechanisms of these molecules remain only partially understood. However, a few studies have proposed the trypanothione redox system as a target, similar to the mammalian thioredoxin system, pointed out as the main target for several gold compounds with significant antitumor activity. In this review, we present the current status of the investigation and design of gold compounds directed at treating leishmaniasis. In addition, we explore potential targets in Leishmania parasites beyond the trypanothione system, taking into account previous studies and structure modulation performed for gold-based compounds.
Collapse
Affiliation(s)
- Leticia B Rosa
- Institute of Biology, University of Campinas UNICAMP, Campinas, SP, Brazil
| | - Rochanna L Aires
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| | - Laiane S Oliveira
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| | - Josielle V Fontes
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| | - Danilo C Miguel
- Institute of Biology, University of Campinas UNICAMP, Campinas, SP, Brazil
| | - Camilla Abbehausen
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| |
Collapse
|
2
|
Rodríguez J, Martínez-Calvo M. Transition-Metal-Mediated Modification of Biomolecules. Chemistry 2020; 26:9792-9813. [PMID: 32602145 DOI: 10.1002/chem.202001287] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/25/2020] [Indexed: 01/15/2023]
Abstract
The site-selective modification of biomolecules has grown spectacularly in recent years. The presence of a large number of functional groups in a biomolecule makes its chemo- and regioselective modification a challenging goal. In this context, transition-metal-mediated reactions are emerging as a powerful tool owing to their unique reactivity and good functional group compatibility, allowing highly efficient and selective bioconjugation reactions that operate under mild conditions. This Minireview focuses on the current state of organometallic chemistry for bioconjugation, highlighting the potential of transition metals for the development of chemoselective and site-specific methods for functionalization of peptides, proteins and nucleic acids. The importance of the selection of ligands attached to the transition metal for conferring the desired chemoselectivity will be highlighted.
Collapse
Affiliation(s)
- Jessica Rodríguez
- Laboratoire Hétérochimie Fondamentale et Appliquée, Université Paul Sabatier/CNRS UMR 5069, 118 Route de Narbonne, 31062, Toulouse Cedex 09, France
| | - Miguel Martínez-Calvo
- Centro de Investigaciones Científicas Avanzadas (CICA), AE CICA-INIBIC, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, Campus de Elviña, 15071 A, Coruña, Galicia, Spain
| |
Collapse
|
3
|
Ok K, Li W, Neu HM, Batelu S, Stemmler TL, Kane MA, Michel SLJ. Role of Gold in Inflammation and Tristetraprolin Activity. Chemistry 2020; 26:1535-1547. [DOI: 10.1002/chem.201904837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Kiwon Ok
- Department of Pharmaceutical Sciences University of Maryland School of Pharmacy 20 Penn St. Baltimore MD 21201 USA
| | - Wenjing Li
- Department of Pharmaceutical Sciences University of Maryland School of Pharmacy 20 Penn St. Baltimore MD 21201 USA
| | - Heather M. Neu
- Department of Pharmaceutical Sciences University of Maryland School of Pharmacy 20 Penn St. Baltimore MD 21201 USA
| | - Sharon Batelu
- Department of Pharmaceutical Sciences Wayne State University 259 Mack Avenue Detroit MI 48201 USA
| | - Timothy L. Stemmler
- Department of Pharmaceutical Sciences Wayne State University 259 Mack Avenue Detroit MI 48201 USA
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences University of Maryland School of Pharmacy 20 Penn St. Baltimore MD 21201 USA
| | - Sarah L. J. Michel
- Department of Pharmaceutical Sciences University of Maryland School of Pharmacy 20 Penn St. Baltimore MD 21201 USA
| |
Collapse
|
4
|
Wenzel MN, Bonsignore R, Thomas SR, Bourissou D, Barone G, Casini A. Cyclometalated Au III Complexes for Cysteine Arylation in Zinc Finger Protein Domains: towards Controlled Reductive Elimination. Chemistry 2019; 25:7628-7634. [PMID: 30990916 PMCID: PMC6594228 DOI: 10.1002/chem.201901535] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Indexed: 12/14/2022]
Abstract
With the aim of exploiting the use of organometallic species for the efficient modification of proteins through C-atom transfer, the gold-mediated cysteine arylation through a reductive elimination process occurring from the reaction of cyclometalated AuIII C^N complexes with a zinc finger peptide (Cys2 His2 type) is here reported. Among the four selected AuIII cyclometalated compounds, the [Au(CCO N)Cl2 ] complex featuring the 2-benzoylpyridine (CCO N) scaffold was identified as the most prone to reductive elimination and Cys arylation in buffered aqueous solution (pH 7.4) at 37 °C by high-resolution LC electrospray ionization mass spectrometry. DFT and quantum mechanics/molecular mechanics (QM/MM) studies permitted to propose a mechanism for the title reaction that is in line with the experimental results. Overall, the results provide new insights into the reactivity of cytotoxic organogold compounds with biologically important zinc finger domains and identify initial structure-activity relationships to enable AuIII -catalyzed reductive elimination in aqueous media.
Collapse
Affiliation(s)
- Margot N. Wenzel
- School of ChemistryCardiff UniversityMain Building, Park PlaceCF10 3ATCardiffUK
| | - Riccardo Bonsignore
- School of ChemistryCardiff UniversityMain Building, Park PlaceCF10 3ATCardiffUK
| | - Sophie R. Thomas
- School of ChemistryCardiff UniversityMain Building, Park PlaceCF10 3ATCardiffUK
| | - Didier Bourissou
- CNRS/Université Paul SabatierLaboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069)118 Route de Narbonne31062Toulouse Cedex 09France
| | - Giampaolo Barone
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e FarmaceuticheUniversità di PalermoViale delle Scienze, Edificio 1790128PalermoItaly
| | - Angela Casini
- School of ChemistryCardiff UniversityMain Building, Park PlaceCF10 3ATCardiffUK
| |
Collapse
|
5
|
Sheng Y, Cao K, Li J, Hou Z, Yuan S, Huang G, Liu H, Liu Y. Selective Targeting of the Zinc Finger Domain of HIV Nucleocapsid Protein NCp7 with Ruthenium Complexes. Chemistry 2018; 24:19146-19151. [PMID: 30276894 DOI: 10.1002/chem.201803917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/19/2018] [Indexed: 12/17/2022]
Abstract
Nucleocapsid protein 7 (NCp7) is an attractive target for anti-HIV drug development. Here we found that ruthenium complexes are reactive to NCp7 and various Ru-agents exhibit significantly different reactivity. Interestingly, the zinc-finger domains of NCp7 also demonstrate different affinity to Ru-complexes; the C-terminal domain is much more reactive than the N-terminal domain. Each zinc-finger domain of NCp7 binds up to three Ru-motifs, and the ruthenium binding causes zinc-ejection from NCp7 and disrupts the protein folding. Therefore, ruthenium complexes interfere with the DNA binding of NCp7 and interrupt the protein function. The different reactivity of Ru-agents suggests a feasible strategy for improving the targeting of NCp7 by ligand design. This work provides an insight into the mechanism of ruthenium complex with NCp7, and suggests more potential application of ruthenium drugs.
Collapse
Affiliation(s)
- Yaping Sheng
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Kaiming Cao
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ji Li
- Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210046, Jiang Su, P.R. China
| | - Zhuanghao Hou
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Siming Yuan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Guangming Huang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hongke Liu
- Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210046, Jiang Su, P.R. China
| | - Yangzhong Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|