1
|
Rehman A, Jahan Z, Sher F, Noor T, Khan Niazi MB, Akram MA, Sher EK. Cellulose acetate based sustainable nanostructured membranes for environmental remediation. CHEMOSPHERE 2022; 307:135736. [PMID: 35850224 DOI: 10.1016/j.chemosphere.2022.135736] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/24/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Membrane-based gas separation has a great potential for reducing environmentally hazardous carbon dioxide (CO2) gas. The polymeric membranes developed for CO2 capturing have some limitations in their selectivity and permeability. There is a need to overcome these issues and developed such membranes having high-performance CO2 capture with cost-effectiveness. The present study aimed to synthesize mixed matrix membranes (MMMs) having improved properties CO2 adsorption performance and stability than that of pure polymer. Further, the effect on CO2 adsorption by increasing the filler concentration in MMMs was investigated. The MMMs were synthesized by incorporating (1-5 wt%) Cu-MOF-GO composites as filler into cellulose-acetate (CA) polymer matrix by adopting the solution casting method. The performance of MMMs was studied by changing the Cu-MOF-GO composite concentration (1-5 wt%) in the polymer matrix at 45 °C up to 15 bar. Morphological analysis by using SEM confirms that by increasing the concentration of Cu-MOF-GO more than 3% will result in their agglomeration in MMM. The successful incorporation of MOF within the polymer matrix of MMMs was confirmed through the presence of functional groups using FTIR and Raman spectroscopy. XRD analysis revealed that pure CA changes its semi-crystalline behaviour into crystalline by the addition of Cu-MOF-GO. The maximum tensile stress and strain rate of MMMs was 45.1 N/mm2 and 12.8%. In addition, with an increase in (4-5 wt%) Cu-MOF-GO concentration the hydrophilicity of MMMs decreases. The maximum uptake rate of CO2 was 1.79 mmol/g and 7.98 wt% at 15 bar. The adsorption results conclude that Cu-MOF-GO composite and CA-based MMM can be effective for CO2 capture.
Collapse
Affiliation(s)
- Ayesha Rehman
- Department of Chemical Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Zaib Jahan
- Department of Chemical Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan.
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK.
| | - Tayyaba Noor
- Department of Chemical Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Muhammad Bilal Khan Niazi
- Department of Chemical Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Muhammad Aftab Akram
- Department of Chemical Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Emina Karahmet Sher
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| |
Collapse
|
2
|
Mixed matrix membranes for post-combustion carbon capture: From materials design to membrane engineering. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120140] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
3
|
Wang J, Xu Y, Qu H, Ma H, Chang R, Ma J. A Highly Permeable Mixed Matrix Membrane Containing a Vertically Aligned Metal-Organic Framework for CO 2 Separation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50441-50450. [PMID: 34636540 DOI: 10.1021/acsami.1c16085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Delicately regulating the distribution morphology of a filler is an effective strategy to promote the separation performance of mixed matrix membranes (MMMs). Herein, we describe a highly permeable metal-organic framework (MOF)-based MMM comprising vertically aligned ZIF-8 (V-ZIF-8) and polysulfone (PSF). The V-ZIF-8 is distributed uniformly within the PSF matrix. With this unique distribution morphology of ZIF-8, the shortest gas transport pathways are formed in the membrane. Meanwhile, the molecular-sieving pores of ZIF-8 can allow CO2 to pass through and crowding out N2. The obtained V-ZIF-8/PSF membrane shows a high CO2 permeability of 89.7 Barrer and a CO2/N2 selectivity of 30.0 that is stable over a period of 50 h. The CO2 permeability is enhanced about 11.8 times than that of the pure PSF membrane. The results prove that the vertically aligned distribution morphology of an MOF in a polymer matrix is an effective method to improve the separation performance of a membrane, providing a new concept for designing more advanced membranes.
Collapse
Affiliation(s)
- Jia Wang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Yinghui Xu
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Hongqiang Qu
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Haiyun Ma
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Ran Chang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Jing Ma
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| |
Collapse
|
4
|
Dou H, Xu M, Wang B, Zhang Z, Luo D, Shi B, Wen G, Mousavi M, Yu A, Bai Z, Jiang Z, Chen Z. Analogous Mixed Matrix Membranes with Self‐Assembled Interface Pathways. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Haozhen Dou
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| | - Mi Xu
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
- School of Chemical Engineering and Technology Collaborative Innovation Centre of Chemical Science and Engineering Key Laboratory for Green Chemical Technology of Ministry of Education Tianjin University Tianjin 300350 China
| | - Baoyu Wang
- School of Chemical Engineering and Food Science Zhengzhou University of Technology Zhengzhou 450044 China
| | - Zhen Zhang
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| | - Dan Luo
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| | - Benbing Shi
- School of Chemical Engineering and Technology Collaborative Innovation Centre of Chemical Science and Engineering Key Laboratory for Green Chemical Technology of Ministry of Education Tianjin University Tianjin 300350 China
| | - Guobin Wen
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| | - Mahboubeh Mousavi
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| | - Aiping Yu
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| | - Zhengyu Bai
- School of Chemistry and Chemical Engineering Key Laboratory of Green Chemical Media and Reactions Henan Normal University Xinxiang 453007 China
| | - Zhongyi Jiang
- School of Chemical Engineering and Technology Collaborative Innovation Centre of Chemical Science and Engineering Key Laboratory for Green Chemical Technology of Ministry of Education Tianjin University Tianjin 300350 China
| | - Zhongwei Chen
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
5
|
Dou H, Xu M, Wang B, Zhang Z, Luo D, Shi B, Wen G, Mousavi M, Yu A, Bai Z, Jiang Z, Chen Z. Analogous Mixed Matrix Membranes with Self‐Assembled Interface Pathways. Angew Chem Int Ed Engl 2021; 60:5864-5870. [DOI: 10.1002/anie.202014893] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Haozhen Dou
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| | - Mi Xu
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
- School of Chemical Engineering and Technology Collaborative Innovation Centre of Chemical Science and Engineering Key Laboratory for Green Chemical Technology of Ministry of Education Tianjin University Tianjin 300350 China
| | - Baoyu Wang
- School of Chemical Engineering and Food Science Zhengzhou University of Technology Zhengzhou 450044 China
| | - Zhen Zhang
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| | - Dan Luo
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| | - Benbing Shi
- School of Chemical Engineering and Technology Collaborative Innovation Centre of Chemical Science and Engineering Key Laboratory for Green Chemical Technology of Ministry of Education Tianjin University Tianjin 300350 China
| | - Guobin Wen
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| | - Mahboubeh Mousavi
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| | - Aiping Yu
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| | - Zhengyu Bai
- School of Chemistry and Chemical Engineering Key Laboratory of Green Chemical Media and Reactions Henan Normal University Xinxiang 453007 China
| | - Zhongyi Jiang
- School of Chemical Engineering and Technology Collaborative Innovation Centre of Chemical Science and Engineering Key Laboratory for Green Chemical Technology of Ministry of Education Tianjin University Tianjin 300350 China
| | - Zhongwei Chen
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
6
|
Wu T, Prasetya N, Li K. Recent advances in aluminium-based metal-organic frameworks (MOF) and its membrane applications. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118493] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
7
|
Allegretto JA, Iborra A, Giussi JM, von Bilderling C, Ceolín M, Moya S, Azzaroni O, Rafti M. Growth of ZIF-8 MOF Films with Tunable Porosity by using Poly (1-vinylimidazole) Brushes as 3D Primers. Chemistry 2020; 26:12388-12396. [PMID: 32672356 DOI: 10.1002/chem.202002493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Indexed: 11/10/2022]
Abstract
This work reports on a novel and versatile approach to control the structure of metal-organic framework (MOFs) films by using polymeric brushes as 3D primers, suitable for triggering heterogeneous MOF nucleation. As a proof-of-concept, this work explores the use of poly(1-vinylimidazole) brushes primer obtained via surface-initiated atom transfer radical polymerization (SI-ATRP) for the synthesis of Zn-based ZIF-8 MOF films. By modifying the grafting density of the brushes, smooth porous films were obtained featuring inherently hydrophobic microporosity arising from ZIF-8 structure, and an additional constructional interparticle mesoporosity, which can be employed for differential adsorption of targeted adsorbates. It was found that the grafting density modulates the constructional porosity of the films obtained; higher grafting densities result in more compact structures, while lower grafting density generates increasingly inhomogeneous films with a higher proportion of interparticle constructional porosity.
Collapse
Affiliation(s)
- Juan A Allegretto
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, Calle 64 y Diag. 113, 1900, La Plata, Argentina.,Universidad Nacional de San Martin (UNSAM), San Martín, Argentina
| | - Agustín Iborra
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, Calle 64 y Diag. 113, 1900, La Plata, Argentina
| | - Juan M Giussi
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, Calle 64 y Diag. 113, 1900, La Plata, Argentina
| | - Catalina von Bilderling
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, Calle 64 y Diag. 113, 1900, La Plata, Argentina.,Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA, Buenos Aires, Argentina
| | - Marcelo Ceolín
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, Calle 64 y Diag. 113, 1900, La Plata, Argentina
| | - Sergio Moya
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182 C, Donostia-San Sebastián, 20014, Spain
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, Calle 64 y Diag. 113, 1900, La Plata, Argentina
| | - Matias Rafti
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, Calle 64 y Diag. 113, 1900, La Plata, Argentina
| |
Collapse
|
8
|
Barcus K, Cohen SM. Free-standing metal-organic framework (MOF) monolayers by self-assembly of polymer-grafted nanoparticles. Chem Sci 2020; 11:8433-8437. [PMID: 34123102 PMCID: PMC8163391 DOI: 10.1039/d0sc03318a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/01/2020] [Indexed: 01/07/2023] Open
Abstract
We report a general method for the synthesis of free-standing, self-assembled MOF monolayers (SAMMs) at an air-water interface using polymer-brush coated MOF nanoparticles. UiO-66, UiO-66-NH2, and MIL-88B-NH2 were functionalized with a catechol-bound chain-transfer agent (CTA) to graft poly(methyl methacrylate) (PMMA) from the surface of the MOF using reversible addition-fragmentation chain transfer polymerization (RAFT). The polymer-coated MOFs were self-assembled at the air-water interface into monolayer films ∼250 nm thick and capable of self-supporting at a total area of 40 mm2. Mixed-particle films were prepared through the assembly of MOF mixtures, while multilayer films were achieved through sequential transfer of the monolayers to a glass slide substrate. This method offers a modular and generalizable route to fabricate thin-films with inherent porosity and sub-micron thickness composed of a variety of MOF particles and functionalities.
Collapse
Affiliation(s)
- Kyle Barcus
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla California 92093 USA
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla California 92093 USA
| |
Collapse
|
9
|
Tan C, Lee MC, Arshadi M, Azizi M, Abbaspourrad A. A Spiderweb‐Like Metal–Organic Framework Multifunctional Foam. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chen Tan
- Department of Food ScienceCornell University Stocking Hall Ithaca NY 14853 USA
| | - Michelle C. Lee
- Department of Food ScienceCornell University Stocking Hall Ithaca NY 14853 USA
| | - Mohammad Arshadi
- Department of Food ScienceCornell University Stocking Hall Ithaca NY 14853 USA
| | - Morteza Azizi
- Department of Food ScienceCornell University Stocking Hall Ithaca NY 14853 USA
| | | |
Collapse
|
10
|
Tan C, Lee MC, Arshadi M, Azizi M, Abbaspourrad A. A Spiderweb-Like Metal-Organic Framework Multifunctional Foam. Angew Chem Int Ed Engl 2020; 59:9506-9513. [PMID: 32083777 DOI: 10.1002/anie.201916211] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Indexed: 11/08/2022]
Abstract
Processing metal-organic frameworks (MOFs) into hierarchical macroscopic materials can greatly extend their practical applications. However, current strategies suffer from severe aggregation of MOFs and limited tuning of the hierarchical porous network. Now, a strategy is presented that can simultaneously tune the MOF loading, composition, spatial distribution, and confinement within various bio-originated macroscopic supports, as well as control the accessibility, robustness, and formability of the support itself. This method enables the good dispersion of individual MOF nanoparticles on a spiderweb-like network within each macrovoid even at high loadings (up to 86 wt %), ensuring the foam pores are highly accessible for excellent adsorption and catalytic capacity. Additionally, this approach allows the direct pre-incorporation of other functional components into the framework. This strategy provides precise control over the properties of both the hierarchical support and MOF.
Collapse
Affiliation(s)
- Chen Tan
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| | - Michelle C Lee
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| | - Mohammad Arshadi
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| | - Morteza Azizi
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| | - Alireza Abbaspourrad
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| |
Collapse
|
11
|
Shi Y, Liang B, Lin RB, Zhang C, Chen B. Gas Separation via Hybrid Metal–Organic Framework/Polymer Membranes. TRENDS IN CHEMISTRY 2020. [DOI: 10.1016/j.trechm.2020.01.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Ma L, Svec F, Lv Y, Tan T. Engineering of the Filler/Polymer Interface in Metal–Organic Framework‐Based Mixed‐Matrix Membranes to Enhance Gas Separation. Chem Asian J 2019; 14:3502-3514. [DOI: 10.1002/asia.201900843] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Liang Ma
- College of Life Science and TechnologyBeijing University of Chemical Technology No 15th North Third Ring East Road, Chaoyang District Beijing 100029 China
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical Technology No 15th North Third Ring East Road, Chaoyang District Beijing 100029 China
| | - Frantisek Svec
- College of Life Science and TechnologyBeijing University of Chemical Technology No 15th North Third Ring East Road, Chaoyang District Beijing 100029 China
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical Technology No 15th North Third Ring East Road, Chaoyang District Beijing 100029 China
| | - Yongqin Lv
- College of Life Science and TechnologyBeijing University of Chemical Technology No 15th North Third Ring East Road, Chaoyang District Beijing 100029 China
| | - Tianwei Tan
- College of Life Science and TechnologyBeijing University of Chemical Technology No 15th North Third Ring East Road, Chaoyang District Beijing 100029 China
| |
Collapse
|
13
|
Liu M, Nothling MD, Webley PA, Fu Q, Qiao GG. Postcombustion Carbon Capture Using Thin-Film Composite Membranes. Acc Chem Res 2019; 52:1905-1914. [PMID: 31246007 DOI: 10.1021/acs.accounts.9b00111] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Climate change due to anthropogenic carbon dioxide emissions (e.g., combustion of fossil fuels) represents one of the most profound environmental disasters of this century. Equipping power plants with carbon capture and storage (CCS) technology has the potential to reduce current worldwide CO2 emissions. However, existing CCS schemes (i.e., amine scrubbing) are highly energy-intensive. The urgent abatement of CO2 emissions relies on the development of new, efficient technologies to capture CO2 from existing power plants. Membrane-based CO2 separation is an attractive technology that meets many of the requirements for energy-efficient industrial carbon capture. Within this domain, thin-film composite (TFC) membranes are particularly attractive, providing high gas permeance in comparison with conventional thicker (∼50 μm) dense membranes. TFC membranes are usually composed of three layers: (1) a bottom porous support layer; (2) a highly permeable intermediate gutter layer; and (3) a thin (<1 μm) species-selective top layer. A key challenge in the development of TFC membranes has been to simultaneously maximize the transmembrane gas permeance of the assembled membrane (by minimizing the gas resistance of each layer) while maintaining high gas-specific selectivity. In this Account, we provide an overview of our recent development of high-performance TFC membrane materials as well as insights into the unique fabrication strategies employed for the selective layer and gutter layer. Optimization of each layer of the membrane assembly individually results in significant improvements in overall membrane performance. First, incorporating nanosized fillers into the selective layer (poly(ethylene glycol)-based polymers) and reducing its thickness (to ca. 50 nm) through continuous assembly of polymers technology yields major improvements in CO2 permeance without loss of selectivity. Second, we focus on optimization of the middle gutter layer of TFC membranes. The development of enhanced gutter layers employing two- and three-dimensional metal-organic framework materials leads to considerable improvements in both CO2 permeance and selectivity compared with traditional poly(dimethylsiloxane) materials. Third, incorporation of a porous, flexible support layer culminates in a mechanically robust high-performance TFC membrane design that exhibits unprecedented CO2 separation performance and holds significant potential for industrial CO2 capture. Alternative strategies are also emerging, whereby the selective layer and gutter layer may be combined for enhanced membrane efficiency. This Account highlights the CO2 capture performance, current challenges, and future research directions in designing high-performance TFC membranes.
Collapse
Affiliation(s)
- Min Liu
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Mitchell D. Nothling
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Paul A. Webley
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Qiang Fu
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Greg G. Qiao
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
14
|
Xie K, Fu Q, Qiao GG, Webley PA. Recent progress on fabrication methods of polymeric thin film gas separation membranes for CO2 capture. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.10.049] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|