1
|
Volk AA, Epps RW, Yonemoto DT, Masters BS, Castellano FN, Reyes KG, Abolhasani M. AlphaFlow: autonomous discovery and optimization of multi-step chemistry using a self-driven fluidic lab guided by reinforcement learning. Nat Commun 2023; 14:1403. [PMID: 36918561 PMCID: PMC10015005 DOI: 10.1038/s41467-023-37139-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
Closed-loop, autonomous experimentation enables accelerated and material-efficient exploration of large reaction spaces without the need for user intervention. However, autonomous exploration of advanced materials with complex, multi-step processes and data sparse environments remains a challenge. In this work, we present AlphaFlow, a self-driven fluidic lab capable of autonomous discovery of complex multi-step chemistries. AlphaFlow uses reinforcement learning integrated with a modular microdroplet reactor capable of performing reaction steps with variable sequence, phase separation, washing, and continuous in-situ spectral monitoring. To demonstrate the power of reinforcement learning toward high dimensionality multi-step chemistries, we use AlphaFlow to discover and optimize synthetic routes for shell-growth of core-shell semiconductor nanoparticles, inspired by colloidal atomic layer deposition (cALD). Without prior knowledge of conventional cALD parameters, AlphaFlow successfully identified and optimized a novel multi-step reaction route, with up to 40 parameters, that outperformed conventional sequences. Through this work, we demonstrate the capabilities of closed-loop, reinforcement learning-guided systems in exploring and solving challenges in multi-step nanoparticle syntheses, while relying solely on in-house generated data from a miniaturized microfluidic platform. Further application of AlphaFlow in multi-step chemistries beyond cALD can lead to accelerated fundamental knowledge generation as well as synthetic route discoveries and optimization.
Collapse
Affiliation(s)
- Amanda A Volk
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695-7905, USA
| | - Robert W Epps
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695-7905, USA
| | - Daniel T Yonemoto
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695-8204, USA
| | - Benjamin S Masters
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695-8204, USA
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695-8204, USA
| | - Kristofer G Reyes
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, NY, 14260, USA
| | - Milad Abolhasani
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695-7905, USA.
| |
Collapse
|
2
|
Cheng R, Liang Z, Zhu L, Li H, Zhang Y, Wang C, Chen S. Fibrous Nanoreactors from Microfluidic Blow Spinning for Mass Production of Highly Stable Ligand‐Free Perovskite Quantum Dots. Angew Chem Int Ed Engl 2022; 61:e202204371. [DOI: 10.1002/anie.202204371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Rui Cheng
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, and Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University Nanjing 210009 China
| | - Zhi‐Bin Liang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, and Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University Nanjing 210009 China
| | - Liangliang Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, and Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University Nanjing 210009 China
| | - Hao Li
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, and Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University Nanjing 210009 China
| | - Yi Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, and Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University Nanjing 210009 China
| | - Cai‐Feng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, and Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University Nanjing 210009 China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering, and Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University Nanjing 210009 China
| |
Collapse
|
3
|
Cheng R, Liang ZB, Zhu L, Li H, Zhang Y, Wang CF, Chen S. Fibrous Nanoreactors from Microfluidic Blow Spinning for Mass Production of Highly Stable Ligand‐Free Perovskite Quantum Dots. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rui Cheng
- Nanjing Tech University College of Chemical Engineering CHINA
| | - Zhi-Bin Liang
- Nanjing Tech University College of Chemical Engineering CHINA
| | - Liangliang Zhu
- Nanjing Tech University College of Chemical Engineering CHINA
| | - Hao Li
- Nanjing Tech University College of Chemical Engineering CHINA
| | - Yi Zhang
- Nanjing Tech University College of Chemical Engineering CHINA
| | - Cai-Feng Wang
- Nanjing Tech University College of Chemical Engineering CHINA
| | - Su Chen
- Nanjing Tech University College of Chemistry and Chemical Engineering 5 Xin Mofan Road 210009 Nanjing CHINA
| |
Collapse
|
4
|
Khizar S, Zine N, Errachid A, Jaffrezic-Renault N, Elaissari A. Microfluidic based nanoparticle synthesis and their potential applications. Electrophoresis 2021; 43:819-838. [PMID: 34758117 DOI: 10.1002/elps.202100242] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/11/2021] [Accepted: 11/03/2021] [Indexed: 11/09/2022]
Abstract
A lot of substantial innovation in advancement of microfluidic field in recent years to produce nanoparticle reveals a number of distinctive characteristics for instance compactness, controllability, fineness in process, and stability along with minimal reaction amount. Recently, a prompt development, as well as realization in production of nanoparticles in microfluidic environs having dimension of micro to nanometers and constituents extending from metals, semiconductors to polymers, has been made. Microfluidics technology integrates fluid mechanics for production of nanoparticles having exclusive with homogenous sizes, shapes, and morphology, which are utilized in several bioapplications such as biosciences, drug delivery, healthcare, including food engineering. Nanoparticles are usually well-known for having fine and rough morphology because of their small dimensions including exceptional physical, biological, chemical, and optical properties. Though the orthodox procedures need huge instruments, costly autoclaves, use extra power, extraordinary heat loss, as well as take surplus time for synthesis. Additionally, this is fascinating in order to systematize, assimilate, in addition, to reduce traditional tools onto one platform to produce micro and nanoparticles. The synthesis of nanoparticles by microfluidics permits fast handling besides better efficacy of method utilizing the smallest components for process. Herein, we will focus on synthesis of nanoparticles by means of microfluidic devices intended for different bioapplications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sumera Khizar
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, F-69622, France
| | - Nadia Zine
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, F-69622, France
| | - Abdelhamid Errachid
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, F-69622, France
| | | | - Abdelhamid Elaissari
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, F-69622, France
| |
Collapse
|
5
|
Giroire B, Garcia A, Marre S, Cardinal T, Aymonier C. Chemistry Platform for the Ultrafast Continuous Synthesis of High-Quality III-V Quantum Dots. Chemistry 2021; 27:12965-12970. [PMID: 34278628 DOI: 10.1002/chem.202101802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Indexed: 11/07/2022]
Abstract
A chemistry platform for the fast continuous synthesis of III-V quantum dots is demonstrated. III-nitride QDs are prepared by using short residence times (less than 30 s) in a one-step continuous process with supercritical solvents. GaN QDs prepared via this route exhibit strong UV photoluminescence with a structuring of the emission signal at low temperature (5 K), confirming their high quality. An example of metal site substitution is given with the synthesis of Inx Ga1-x N solid solution. A continuous bandgap shift towards lower energies is demonstrated when increasing the indium content with strong photoluminescence signals from UV to visible. The chemistry platform proposed could be easily extrapolated to binary and ternary III phosphides or arsenides with the homologous V source.
Collapse
Affiliation(s)
- Baptiste Giroire
- Institut de Chimie de la Matière Condensée de Bordeaux - UMR 5026, 87, Avenue du Docteur Schweitzer, 33608, Pessac cedex, France
| | - Alain Garcia
- Institut de Chimie de la Matière Condensée de Bordeaux - UMR 5026, 87, Avenue du Docteur Schweitzer, 33608, Pessac cedex, France
| | - Samuel Marre
- Institut de Chimie de la Matière Condensée de Bordeaux - UMR 5026, 87, Avenue du Docteur Schweitzer, 33608, Pessac cedex, France
| | - Thierry Cardinal
- Institut de Chimie de la Matière Condensée de Bordeaux - UMR 5026, 87, Avenue du Docteur Schweitzer, 33608, Pessac cedex, France
| | - Cyril Aymonier
- Institut de Chimie de la Matière Condensée de Bordeaux - UMR 5026, 87, Avenue du Docteur Schweitzer, 33608, Pessac cedex, France
| |
Collapse
|
6
|
Li GX, Li Q, Cheng R, Chen S. Synthesis of quantum dots based on microfluidic technology. Curr Opin Chem Eng 2020. [DOI: 10.1016/j.coche.2020.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Shen J, Shafiq M, Ma M, Chen H. Synthesis and Surface Engineering of Inorganic Nanomaterials Based on Microfluidic Technology. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1177. [PMID: 32560284 PMCID: PMC7353232 DOI: 10.3390/nano10061177] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022]
Abstract
The controlled synthesis and surface engineering of inorganic nanomaterials hold great promise for the design of functional nanoparticles for a variety of applications, such as drug delivery, bioimaging, biosensing, and catalysis. However, owing to the inadequate and unstable mass/heat transfer, conventional bulk synthesis methods often result in the poor uniformity of nanoparticles, in terms of microstructure, morphology, and physicochemical properties. Microfluidic technologies with advantageous features, such as precise fluid control and rapid microscale mixing, have gathered the widespread attention of the research community for the fabrication and engineering of nanomaterials, which effectively overcome the aforementioned shortcomings of conventional bench methods. This review summarizes the latest research progress in the microfluidic fabrication of different types of inorganic nanomaterials, including silica, metal, metal oxides, metal organic frameworks, and quantum dots. In addition, the surface modification strategies of nonporous and porous inorganic nanoparticles based on microfluidic method are also introduced. We also provide the readers with an insight on the red blocks and prospects of microfluidic approaches, for designing the next generation of inorganic nanomaterials.
Collapse
Affiliation(s)
- Jie Shen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; (J.S.); (H.C.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Muhammad Shafiq
- Department of Chemistry, Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad 45650, Pakistan;
| | - Ming Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; (J.S.); (H.C.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hangrong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; (J.S.); (H.C.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Novel Method of MoS
2
Decorated CdS Core‐shell Nano‐Heterojunctions for Highly Efficient and Stable Hydrogen Generation. ChemistrySelect 2019. [DOI: 10.1002/slct.201903127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
9
|
Kibar G, Çalışkan U, Erdem EY, Çetin B. One‐pot synthesis of organic–inorganic hybrid polyhedral oligomeric silsesquioxane microparticles in a double‐zone temperature controlled microfluidic reactor. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/pola.29399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Güneş Kibar
- Department of Materials EngineeringAdana Alparslan Turkes Science and Technology University 01250 Adana Turkey
| | - Umutcan Çalışkan
- Microfluidics & Lab‐on‐a‐chip Research Group, Mechanical Engineering DepartmentBilkent University 06800 Ankara Turkey
| | - E. Yegân Erdem
- Microfluidics & Lab‐on‐a‐chip Research Group, Mechanical Engineering DepartmentBilkent University 06800 Ankara Turkey
- UNAM Institute of Materials Science and NanotechnologyBilkent University 06800 Ankara Turkey
| | - Barbaros Çetin
- Microfluidics & Lab‐on‐a‐chip Research Group, Mechanical Engineering DepartmentBilkent University 06800 Ankara Turkey
| |
Collapse
|