1
|
Bera S, Sen S, Maiti D. Unveiling Alternate Electrode Electrolysis in Electro-Photochemical and Electro-Organic Syntheses. J Am Chem Soc 2024; 146:25166-25175. [PMID: 39193802 DOI: 10.1021/jacs.4c08826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Electro-photochemical organic synthesis is a rapidly growing field. Recently, technological advancement has contributed significantly to improve electro- and photolytic organic transformations in terms of energy efficiency and productivity. Herein, we have introduced alternating electrode electrolysis|alternate electrode electrolysis (AEE), a new technique in electrosynthesis which in combination with blue LED demonstrated an interesting three-component reaction with aryl diazoesters, 1,4-quinones, and acetone to synthesize ketal-functionalized 1,4-quinones. The AEE setup consists of two pairs of cathode-anode compared to the conventional setup of one pair. Each pair would be polarized or in a resting stage with a preset interval of choice. This would maintain a continuous potential resulting in maximum current and would facilitate the mass transport, thereby increasing the overall efficiency of the reaction. AEE offers the efficient utilization of photochemically generated carbenes. We extended AEE applications in paired photoelectrolysis reactions for the late-stage functionalization of bioactive molecules and pharmaceutical agents. As an application of AEE in electrosynthesis (without light), we demonstrated the efficient hydroxylation of fluorinated benzene and the reduction of benzonitrile to benzyl amine. The amalgamation of AEE with blue LED contributes to sustainability, and we believe that it holds great promise in the field of electro-photochemical organic synthesis.
Collapse
Affiliation(s)
- Subhankar Bera
- Department of Chemistry, School of Natural Sciences, Shiv Nadar IoE Deemed to be University, Delhi-NCR Dadri, Chithera, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Subhabrata Sen
- Department of Chemistry, School of Natural Sciences, Shiv Nadar IoE Deemed to be University, Delhi-NCR Dadri, Chithera, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Debajit Maiti
- Department of Chemistry, School of Natural Sciences, Shiv Nadar IoE Deemed to be University, Delhi-NCR Dadri, Chithera, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| |
Collapse
|
2
|
Liu R, Shen ML, Fan LF, Zhou XL, Wang PS, Gong LZ. Palladium-Catalyzed Branch- and Z-Selective Allylic C-H Amination with Aromatic Amines. Angew Chem Int Ed Engl 2023; 62:e202211631. [PMID: 36399016 DOI: 10.1002/anie.202211631] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/19/2022]
Abstract
Allylamines are important building blocks in the synthesis of bioactive compounds. The direct coupling of allylic C-H bonds and commonly available amines is a major synthetic challenge. An allylic C-H amination of 1,4-dienes has been accomplished by palladium catalysis. With aromatic amines, branch-selective allylic aminations are favored to generate thermodynamically unstable Z-allylamines. In addition, more basic aliphatic cyclic amines can also engage in the reaction, but linear dienyl allylic amines are the major products.
Collapse
Affiliation(s)
- Rui Liu
- Department of Chemistry, University of Science and Technology of China, No.96, Jinzhai Road, Baohe District, Hefei, 230026, P. R.China
| | - Meng-Lan Shen
- Department of Chemistry, University of Science and Technology of China, No.96, Jinzhai Road, Baohe District, Hefei, 230026, P. R.China
| | - Lian-Feng Fan
- Department of Chemistry, University of Science and Technology of China, No.96, Jinzhai Road, Baohe District, Hefei, 230026, P. R.China
| | - Xiao-Le Zhou
- Department of Chemistry, University of Science and Technology of China, No.96, Jinzhai Road, Baohe District, Hefei, 230026, P. R.China
| | - Pu-Sheng Wang
- Department of Chemistry, University of Science and Technology of China, No.96, Jinzhai Road, Baohe District, Hefei, 230026, P. R.China
| | - Liu-Zhu Gong
- Department of Chemistry, University of Science and Technology of China, No.96, Jinzhai Road, Baohe District, Hefei, 230026, P. R.China
| |
Collapse
|
3
|
Caprioglio D, Mattoteia D, Muñoz E, Taglialatela‐Scafati O, Appendino G. One‐Pot Oxidative Heterofunctionalization of Resorcinolic Cannabinoids to Non‐thiophilic Aminocannabinoquinones. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Diego Caprioglio
- Dipartimento di Scienze del Farmaco Università degli Studi del Piemonte Orientale Largo Donegani 2 28100 Novara Italy
| | - Daiana Mattoteia
- Dipartimento di Scienze del Farmaco Università degli Studi del Piemonte Orientale Largo Donegani 2 28100 Novara Italy
| | - Eduardo Muñoz
- Instituto Maimónides de Investigación Biomédica de Córdoba 14004 Córdoba Spain
- Departamento de Biología Celular Fisiología e Inmunología Universidad de Córdoba 14071 Córdoba Spain
- Hospital Universitario Reina Sofía 14004 Córdoba Spain
| | | | - Giovanni Appendino
- Dipartimento di Scienze del Farmaco Università degli Studi del Piemonte Orientale Largo Donegani 2 28100 Novara Italy
| |
Collapse
|
4
|
Pal S, Chatterjee R, Santra S, Zyryanov GV, Majee A. Metal‐Free, PhI(OAc)
2
‐Promoted Oxidative C(
sp
2
)−H Difunctionalization: Synthesis of Thioaminated Naphthoquinones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Satyajit Pal
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| | - Rana Chatterjee
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| | - Sougata Santra
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute Ural Federal University 19 Mira Street 620002 Yekaterinburg Russian Federation
| | - Grigory V. Zyryanov
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute Ural Federal University 19 Mira Street 620002 Yekaterinburg Russian Federation
- I. Ya. Postovskiy Institute of Organic Synthesis Ural Division of the Russian Academy of Sciences 22 S. Kovalevskoy Street 620219 Yekaterinburg Russian Federation
| | - Adinath Majee
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| |
Collapse
|
5
|
Chong C, Zhang Q, Ke J, Zhang H, Yang X, Wang B, Ding W, Lu Z. Total Synthesis of Anti‐Cancer Meroterpenoids Dysideanone B and Dysiherbol A and Structural Reassignment of Dysiherbol A. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chuanke Chong
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University 38 Tongyan Rd Tianjin 300350 China
| | - Qunlong Zhang
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University 38 Tongyan Rd Tianjin 300350 China
| | - Jia Ke
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University 38 Tongyan Rd Tianjin 300350 China
| | - Haiming Zhang
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University 38 Tongyan Rd Tianjin 300350 China
| | - Xudong Yang
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University 38 Tongyan Rd Tianjin 300350 China
| | - Bingjian Wang
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University 38 Tongyan Rd Tianjin 300350 China
| | - Wei Ding
- Tianjin Key Laboratory of Human Development and Reproductive Regulation Tianjin Central Hospital of Gynecology Obstetrics Nankai University 156 Third Rd Tianjin 300052 China
| | - Zhaoyong Lu
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University 38 Tongyan Rd Tianjin 300350 China
- State Key Laboratory of Natural Medicines China Pharmaceutical University 24 Tongjiaxiang Nanjing 210009 China
| |
Collapse
|
6
|
Chong C, Zhang Q, Ke J, Zhang H, Yang X, Wang B, Ding W, Lu Z. Total Synthesis of Anti-Cancer Meroterpenoids Dysideanone B and Dysiherbol A and Structural Reassignment of Dysiherbol A. Angew Chem Int Ed Engl 2021; 60:13807-13813. [PMID: 33847042 DOI: 10.1002/anie.202100541] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/30/2021] [Indexed: 01/01/2023]
Abstract
The first total synthesis of marine anti-cancer meroterpenoids dysideanone B and dysiherbol A have been accomplished in a divergent way. The synthetic route features: 1) a site and stereoselective α-position alkylation of a Wieland-Miescher ketone derivative with a bulky benzyl bromide to join the terpene and aromatic moieties together and set the stage for subsequent cyclization reactions; 2) an intramolecular radical cyclization to construct the 6/6/6/6-tetracycle of dysideanone B and an intramolecular Heck reaction to forge the 6/6/5/6-fused core structure of dysiherbol A. A late-stage introduction of the ethoxy group in dysideanone B reveals that this group might come from the solvent ethanol. The structure of dysiherbol A has been revised based on our chemical total synthesis.
Collapse
Affiliation(s)
- Chuanke Chong
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Rd, Tianjin, 300350, China
| | - Qunlong Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Rd, Tianjin, 300350, China
| | - Jia Ke
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Rd, Tianjin, 300350, China
| | - Haiming Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Rd, Tianjin, 300350, China
| | - Xudong Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Rd, Tianjin, 300350, China
| | - Bingjian Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Rd, Tianjin, 300350, China
| | - Wei Ding
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Nankai University, 156 Third Rd, Tianjin, 300052, China
| | - Zhaoyong Lu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Rd, Tianjin, 300350, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| |
Collapse
|
7
|
Tran N, Do Van Thanh N, Le MLP. Organic Positive Materials for Magnesium Batteries: A Review. Chemistry 2021; 27:9198-9217. [DOI: 10.1002/chem.202100223] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 12/18/2022]
Affiliation(s)
- Ngoc‐Anh Tran
- Lepmi Univ. Grenoble Alpes Univ. Savoie Mont Blanc, CNRS, Grenoble INP 38000 Grenoble France
| | - Nhan Do Van Thanh
- Chemistry Department University of Alberta Edmonton Alberta T6G 2G2 Canada
| | - My Loan Phung Le
- Applied Physical Chemistry Laboratory (APCLab) University of Science – Vietnam National University – Ho Chi Minh City (VNU-HCM) 227 Nguyen Van Cu Street District 5 Ho Chi Minh City Vietnam
| |
Collapse
|
8
|
Yu C, Patureau FW. Regioselective Oxidative Arylation of Fluorophenols. Angew Chem Int Ed Engl 2019; 58:18530-18534. [PMID: 31584740 PMCID: PMC6916641 DOI: 10.1002/anie.201910352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/24/2019] [Indexed: 11/08/2022]
Abstract
A metal free and highly regioselective oxidative arylation reaction of fluorophenols is described. The relative position of the fluoride leaving group (i.e., ortho or para) controls the 1,2 or 1,4 nature of the arylated quinone product, lending versatility and generality to this oxidative, defluorinative, arylation concept.
Collapse
Affiliation(s)
- Congjun Yu
- Institute of Organic Chemistry, RWTH, Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Frederic W Patureau
- Institute of Organic Chemistry, RWTH, Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
9
|
Affiliation(s)
- Congjun Yu
- Institut für Organische ChemieRWTH Aachen University Landoltweg 1 52074 Aachen Deutschland
| | - Frederic W. Patureau
- Institut für Organische ChemieRWTH Aachen University Landoltweg 1 52074 Aachen Deutschland
| |
Collapse
|
10
|
Affiliation(s)
- Yijun Wang
- School of Basic Medical Sciences; Zhengzhou University; Science Avenue 100 Zhengzhou 450001 P. R. China
| | - Shuai Zhu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology; Ministry of Education, School of Pharmaceutical Sciences; Jiangnan University; Lihu Avenue 1800 Wuxi 214122 P. R. China
| | - Liang-Hua Zou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology; Ministry of Education, School of Pharmaceutical Sciences; Jiangnan University; Lihu Avenue 1800 Wuxi 214122 P. R. China
| |
Collapse
|