1
|
Nakashima T, Tanibe R, Yoshida H, Ehara M, Kuzuhara M, Kawai T. Self‐Regulated Pathway‐Dependent Chirality Control of Silver Nanoclusters. Angew Chem Int Ed Engl 2022; 61:e202208273. [DOI: 10.1002/anie.202208273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Takuya Nakashima
- Division of Materials Science Graduate School of Science and Technology Nara Institute of Science and Technology 8916-5 Takayama, Ikoma Nara 630-0192 Japan
- Department of Chemistry Graduate School of Science Osaka Metropolitan University 3-3-138 Sugimoto, Sumiyoshi-ku Osaka 558-8585 Japan
| | - Riku Tanibe
- Division of Materials Science Graduate School of Science and Technology Nara Institute of Science and Technology 8916-5 Takayama, Ikoma Nara 630-0192 Japan
| | - Hiroto Yoshida
- Division of Materials Science Graduate School of Science and Technology Nara Institute of Science and Technology 8916-5 Takayama, Ikoma Nara 630-0192 Japan
| | - Masahiro Ehara
- Research Center for Computational Science Institute for Molecular Science 38 Nishigo-Naka, Myodaiji Okazaki 444-8585 Japan
| | - Miwa Kuzuhara
- Division of Materials Science Graduate School of Science and Technology Nara Institute of Science and Technology 8916-5 Takayama, Ikoma Nara 630-0192 Japan
| | - Tsuyoshi Kawai
- Division of Materials Science Graduate School of Science and Technology Nara Institute of Science and Technology 8916-5 Takayama, Ikoma Nara 630-0192 Japan
| |
Collapse
|
2
|
Nakashima T, Tanibe R, Yoshida H, Ehara M, Kuzuhara M, Kawai T. Self‐regulated Pathway‐dependent Chirality Control of Silver Nanoclusters. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Takuya Nakashima
- Osaka Metropolitan University: Osaka Koritsu Daigaku Department of Chemistry, Graduate School of Science 3-3-138 SugimotoSumiyoshi-ku 558-8585 Osaka JAPAN
| | - Riku Tanibe
- Nara Institute of Science and Technology: Nara Sentan Kagaku Gijutsu Daigakuin Daigaku Division of Materials Science JAPAN
| | - Hiroto Yoshida
- Nara Institute of Science and Technology: Nara Sentan Kagaku Gijutsu Daigakuin Daigaku Division of Materials Science JAPAN
| | - Masahiro Ehara
- Bunshi Kagaku Kenkyujo Research Center for Computational Science JAPAN
| | - Miwa Kuzuhara
- Nara Institute of Science and Technology: Nara Sentan Kagaku Gijutsu Daigakuin Daigaku Division of Materials Science JAPAN
| | - Tsuyoshi Kawai
- Nara Institute of Science and Technology: Nara Sentan Kagaku Gijutsu Daigakuin Daigaku Division of Materials Science JAPAN
| |
Collapse
|
3
|
Deng G, Malola S, Yuan P, Liu X, Teo BK, Häkkinen H, Zheng N. Enhanced Surface Ligands Reactivity of Metal Clusters by Bulky Ligands for Controlling Optical and Chiral Properties. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Guocheng Deng
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Sami Malola
- Departments of Physics and Chemistry, Nanoscience Center University of Jyväskylä 40014 Jyväskylä Finland
| | - Peng Yuan
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xianhu Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Boon K. Teo
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Hannu Häkkinen
- Departments of Physics and Chemistry, Nanoscience Center University of Jyväskylä 40014 Jyväskylä Finland
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| |
Collapse
|
4
|
Liu W, Wang J, Yuan S, Chen X, Wang Q. Chiral Superatomic Nanoclusters Ag
47
Induced by the Ligation of Amino Acids. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Wen‐Di Liu
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Tsinghua University Beijing 100084 P. R. China
| | - Jia‐Qi Wang
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Tsinghua University Beijing 100084 P. R. China
| | - Shang‐Fu Yuan
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Tsinghua University Beijing 100084 P. R. China
| | - Xi Chen
- Department of Applied Physics Aalto University Otakaari 1 02150 Espoo Finland
| | - Quan‐Ming Wang
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
5
|
Sun YX, Zhang DD, Sheng Y, Xu D, Zhang R, Bradley M. Supramolecular assembly induced chiral interface for electrochemical recognition of tryptophan enantiomers. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2011-2020. [PMID: 33955988 DOI: 10.1039/d1ay00222h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The β-CD@PEI-Fc chiral interface was prepared based on the supramolecular host-guest interaction between ferrocene (Fc) grafted polyethyleneimine (PEI-Fc) and chiral β-cyclodextrin (β-CD). SEM results show that β-CD@PEI-Fc interface has a regular spatial structure, which can effectively distinguish tryptophan (Trp) enantiomers. Under the optimal conditions, differential pulse voltammetry shows that the peak current ratio (Id/Il) of Trp enantiomers can reach 2.84 at 15 °C. More interestingly, the β-CD@PEI-Fc/GCE exhibited chiral recognition of d-Trp and l-Trp via water contact angle measurements. There was a good linear relationship between the peak current and the concentration of Trp enantiomers in the range from 0.005 mM to 0.10 mM. Finally, the chiral interface can be applied for quick detection of the proportion of isomers in Trp racemic solution, which is very important for chiral recognition in racemic mixture of chiral compounds. Meanwhile, the β-CD@PEI-Fc/GCE showed good stability and reproducibility.
Collapse
Affiliation(s)
- Yi-Xin Sun
- School of Materials Science and Engineering, Changzhou University, Changzhou 213614, Jiangsu, China and National Experimental Demonstration Center for Materials Science and Engineering (ChangzhouUniversity), Changzhou, Jiangsu 213164, China
| | - Dan-Dan Zhang
- School of Materials Science and Engineering, Changzhou University, Changzhou 213614, Jiangsu, China and National Experimental Demonstration Center for Materials Science and Engineering (ChangzhouUniversity), Changzhou, Jiangsu 213164, China
| | - Yang Sheng
- School of Materials Science and Engineering, Changzhou University, Changzhou 213614, Jiangsu, China and National Experimental Demonstration Center for Materials Science and Engineering (ChangzhouUniversity), Changzhou, Jiangsu 213164, China
| | - Defeng Xu
- School of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou 213164, Jiangsu, P.R. China
| | - Rong Zhang
- School of Materials Science and Engineering, Changzhou University, Changzhou 213614, Jiangsu, China and National Experimental Demonstration Center for Materials Science and Engineering (ChangzhouUniversity), Changzhou, Jiangsu 213164, China
| | - Mark Bradley
- School of Chemistry, EaStCHEM, University of Edinburgh, Joseph Black Building, West Mains Road, Edinburgh, EH93JJ, UK.
| |
Collapse
|
6
|
Deng G, Malola S, Yuan P, Liu X, Teo BK, Häkkinen H, Zheng N. Enhanced Surface Ligands Reactivity of Metal Clusters by Bulky Ligands for Controlling Optical and Chiral Properties. Angew Chem Int Ed Engl 2021; 60:12897-12903. [PMID: 33719174 DOI: 10.1002/anie.202101141] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/12/2021] [Indexed: 12/11/2022]
Abstract
Surface ligands play critical roles in determining the surface properties of metal clusters. However, modulating the properties and controlling the surface structure of clusters through surface-capping-agent displacement is challenging. Herein, [Ag14 (SPh(CF3 )2 )12 (PPh3 )4 (DMF)4 ] (Ag14 -DMF; DMF=N,N-dimethylformamide), with weakly coordinated DMF ligands on surface silver sites, was synthesized by a mixed-ligands strategy. Owing to the high surface reactivity of Ag14 -DMF, the surface ligands are labile, easily dissociated or exchanged by other ligands. Based on the enhanced surface reactivity, easy modulation of the optical properties of Ag14 by reversible "on-off" DMF ligation was realized. When chiral amines were introduced to as-prepared products, all eight surface ligands were replaced by amines and the racemic Ag14 clusters were converted to optically pure homochiral Ag14 clusters as evidenced by circular dichroism (CD) activity and single-crystal X-ray diffraction (SCXRD). This work provides a new insight into modulation of the optical properties of metal clusters and atomically precise homochiral clusters for specific applications are obtained.
Collapse
Affiliation(s)
- Guocheng Deng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Sami Malola
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Peng Yuan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xianhu Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Boon K Teo
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Hannu Häkkinen
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
7
|
Liu W, Wang J, Yuan S, Chen X, Wang Q. Chiral Superatomic Nanoclusters Ag
47
Induced by the Ligation of Amino Acids. Angew Chem Int Ed Engl 2021; 60:11430-11435. [DOI: 10.1002/anie.202100972] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Wen‐Di Liu
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Tsinghua University Beijing 100084 P. R. China
| | - Jia‐Qi Wang
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Tsinghua University Beijing 100084 P. R. China
| | - Shang‐Fu Yuan
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Tsinghua University Beijing 100084 P. R. China
| | - Xi Chen
- Department of Applied Physics Aalto University Otakaari 1 02150 Espoo Finland
| | - Quan‐Ming Wang
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
8
|
Zhuang S, Chen D, Liao L, Zhao Y, Xia N, Zhang W, Wang C, Yang J, Wu Z. Hard‐Sphere Random Close‐Packed Au47Cd2(TBBT)31Nanoclusters with a Faradaic Efficiency of Up to 96 % for Electrocatalytic CO2Reduction to CO. Angew Chem Int Ed Engl 2020; 59:3073-3077. [DOI: 10.1002/anie.201912845] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/01/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Shengli Zhuang
- Key Laboratory of Materials PhysicsAnhui Key Laboratory of Nanomaterials and NanotechnologyCAS Center for Excellence in NanoscienceInstitute of Solid State PhysicsChinese Academy of Sciences Hefei 230031 P. R. China
- Institute of Physical Science and Information TechnologyAnhui University Hefei Anhui 230601 P. R. China
| | - Dong Chen
- State Key Laboratory of Multiphase Complex SystemsInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
| | - Lingwen Liao
- Key Laboratory of Materials PhysicsAnhui Key Laboratory of Nanomaterials and NanotechnologyCAS Center for Excellence in NanoscienceInstitute of Solid State PhysicsChinese Academy of Sciences Hefei 230031 P. R. China
- Institute of Physical Science and Information TechnologyAnhui University Hefei Anhui 230601 P. R. China
| | - Yan Zhao
- Key Laboratory of Materials PhysicsAnhui Key Laboratory of Nanomaterials and NanotechnologyCAS Center for Excellence in NanoscienceInstitute of Solid State PhysicsChinese Academy of Sciences Hefei 230031 P. R. China
- Institute of Physical Science and Information TechnologyAnhui University Hefei Anhui 230601 P. R. China
| | - Nan Xia
- Key Laboratory of Materials PhysicsAnhui Key Laboratory of Nanomaterials and NanotechnologyCAS Center for Excellence in NanoscienceInstitute of Solid State PhysicsChinese Academy of Sciences Hefei 230031 P. R. China
- Institute of Physical Science and Information TechnologyAnhui University Hefei Anhui 230601 P. R. China
| | - Wenhao Zhang
- Key Laboratory of Materials PhysicsAnhui Key Laboratory of Nanomaterials and NanotechnologyCAS Center for Excellence in NanoscienceInstitute of Solid State PhysicsChinese Academy of Sciences Hefei 230031 P. R. China
- Institute of Physical Science and Information TechnologyAnhui University Hefei Anhui 230601 P. R. China
| | - Chengming Wang
- Hefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jun Yang
- State Key Laboratory of Multiphase Complex SystemsInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
| | - Zhikun Wu
- Key Laboratory of Materials PhysicsAnhui Key Laboratory of Nanomaterials and NanotechnologyCAS Center for Excellence in NanoscienceInstitute of Solid State PhysicsChinese Academy of Sciences Hefei 230031 P. R. China
- Institute of Physical Science and Information TechnologyAnhui University Hefei Anhui 230601 P. R. China
| |
Collapse
|
9
|
Zhuang S, Chen D, Liao L, Zhao Y, Xia N, Zhang W, Wang C, Yang J, Wu Z. Hard‐Sphere Random Close‐Packed Au
47
Cd
2
(TBBT)
31
Nanoclusters with a Faradaic Efficiency of Up to 96 % for Electrocatalytic CO
2
Reduction to CO. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912845] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shengli Zhuang
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics Chinese Academy of Sciences Hefei 230031 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei Anhui 230601 P. R. China
| | - Dong Chen
- State Key Laboratory of Multiphase Complex Systems Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Lingwen Liao
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics Chinese Academy of Sciences Hefei 230031 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei Anhui 230601 P. R. China
| | - Yan Zhao
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics Chinese Academy of Sciences Hefei 230031 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei Anhui 230601 P. R. China
| | - Nan Xia
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics Chinese Academy of Sciences Hefei 230031 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei Anhui 230601 P. R. China
| | - Wenhao Zhang
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics Chinese Academy of Sciences Hefei 230031 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei Anhui 230601 P. R. China
| | - Chengming Wang
- Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jun Yang
- State Key Laboratory of Multiphase Complex Systems Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Zhikun Wu
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics Chinese Academy of Sciences Hefei 230031 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei Anhui 230601 P. R. China
| |
Collapse
|
10
|
Hao C, Xu L, Sun M, Zhang H, Kuang H, Xu C. Circularly Polarized Light Triggers Biosensing Based on Chiral Assemblies. Chemistry 2019; 25:12235-12240. [DOI: 10.1002/chem.201901721] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Changlong Hao
- International Joint Research Laboratory for Biointerface and BiodetectionState Key Lab of Food Science and TechnologySchool of Food Science and TechnologyJiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and BiodetectionState Key Lab of Food Science and TechnologySchool of Food Science and TechnologyJiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and BiodetectionState Key Lab of Food Science and TechnologySchool of Food Science and TechnologyJiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Hongyu Zhang
- International Joint Research Laboratory for Biointerface and BiodetectionState Key Lab of Food Science and TechnologySchool of Food Science and TechnologyJiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and BiodetectionState Key Lab of Food Science and TechnologySchool of Food Science and TechnologyJiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and BiodetectionState Key Lab of Food Science and TechnologySchool of Food Science and TechnologyJiangnan University Wuxi Jiangsu 214122 P. R. China
| |
Collapse
|
11
|
Jin Y, Li S, Han Z, Yan BJ, Li HY, Dong XY, Zang SQ. Cations Controlling the Chiral Assembly of Luminescent Atomically Precise Copper(I) Clusters. Angew Chem Int Ed Engl 2019; 58:12143-12148. [PMID: 31267660 DOI: 10.1002/anie.201906614] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Indexed: 11/09/2022]
Abstract
Chiral assembly and asymmetric synthesis are critically important for the generation of chiral metal clusters with chiroptical activities. Here, a racemic mixture of [K(CH3 OH)2 (18-crown-6)]+ [Cu5 (St Bu)6 ]- (1⋅CH3 OH) in the chiral space group was prepared, in which the chiral red-emissive anionic [Cu5 (St Bu)6 ]- cluster was arranged along a twofold screw axis. Interestingly, the release of the coordinated CH3 OH of the cationic units turned the chiral 1⋅CH3 OH crystal into a mesomeric crystal [K(18-crown-6)]+ [Cu5 (St Bu)6 ]- (1), which has a centrosymmetric space group, by adding symmetry elements of glide and mirror planes through both disordered [Cu5 (St Bu)6 ]- units. The switchable chiral/achiral rearrangement of [Cu5 (St Bu)6 ]- clusters along with the capture/release of CH3 OH were concomitant with an intense increase/decrease in luminescence. We also used cationic chiral amino alcohols to induce the chiral assembly of a pair of enantiomers, [d/l-valinol(18-crown-6)]+ [Cu5 (St Bu)6 ]- (d/l-Cu5V ), which display impressive circularly polarized luminescence (CPL) in contrast to the CPL-silent racemic mixture of 1⋅CH3 OH and mesomeric 1.
Collapse
Affiliation(s)
- Yan Jin
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Si Li
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhen Han
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Bing-Jie Yan
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Hai-Yang Li
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Xi-Yan Dong
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, China.,College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Shuang-Quan Zang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
12
|
Jin Y, Li S, Han Z, Yan B, Li H, Dong X, Zang S. Cations Controlling the Chiral Assembly of Luminescent Atomically Precise Copper(I) Clusters. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906614] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yan Jin
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 China
| | - Si Li
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 China
| | - Zhen Han
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 China
| | - Bing‐Jie Yan
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 China
| | - Hai‐Yang Li
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 China
| | - Xi‐Yan Dong
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 China
- College of Chemistry and Chemical EngineeringHenan Polytechnic University Jiaozuo 454000 China
| | - Shuang‐Quan Zang
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 China
| |
Collapse
|
13
|
Zhuang S, Liao L, Yuan J, Wang C, Zhao Y, Xia N, Gan Z, Gu W, Li J, Deng H, Yang J, Wu Z. Kernel Homology in Gold Nanoclusters. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808997] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Shengli Zhuang
- Key Laboratory of Materials PhysicsAnhui Key Laboratory of Nanomaterials and NanotechnologyCAS Center for Excellence in NanoscienceInstitute of Solid State PhysicsChinese Academy of Sciences Hefei 230031 P. R. China
- Institute of Physical Science and Information TechnologyAnhui University Hefei 230601 China
| | - Lingwen Liao
- Key Laboratory of Materials PhysicsAnhui Key Laboratory of Nanomaterials and NanotechnologyCAS Center for Excellence in NanoscienceInstitute of Solid State PhysicsChinese Academy of Sciences Hefei 230031 P. R. China
- Institute of Physical Science and Information TechnologyAnhui University Hefei 230601 China
| | - Jinyun Yuan
- Hefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Chengming Wang
- Hefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Yan Zhao
- Key Laboratory of Materials PhysicsAnhui Key Laboratory of Nanomaterials and NanotechnologyCAS Center for Excellence in NanoscienceInstitute of Solid State PhysicsChinese Academy of Sciences Hefei 230031 P. R. China
- Institute of Physical Science and Information TechnologyAnhui University Hefei 230601 China
| | - Nan Xia
- Key Laboratory of Materials PhysicsAnhui Key Laboratory of Nanomaterials and NanotechnologyCAS Center for Excellence in NanoscienceInstitute of Solid State PhysicsChinese Academy of Sciences Hefei 230031 P. R. China
- Institute of Physical Science and Information TechnologyAnhui University Hefei 230601 China
| | - Zibao Gan
- Key Laboratory of Materials PhysicsAnhui Key Laboratory of Nanomaterials and NanotechnologyCAS Center for Excellence in NanoscienceInstitute of Solid State PhysicsChinese Academy of Sciences Hefei 230031 P. R. China
- Institute of Physical Science and Information TechnologyAnhui University Hefei 230601 China
| | - Wanmiao Gu
- Key Laboratory of Materials PhysicsAnhui Key Laboratory of Nanomaterials and NanotechnologyCAS Center for Excellence in NanoscienceInstitute of Solid State PhysicsChinese Academy of Sciences Hefei 230031 P. R. China
- Institute of Physical Science and Information TechnologyAnhui University Hefei 230601 China
| | - Jin Li
- Tsinghua University-Peking University Joint Center for Life SciencesSchool of Life SciencesTsinghua University Beijing 100084 P. R. China
| | - Haiteng Deng
- MOE Key Laboratory of BioinformaticsSchool of Life SciencesTsinghua University Beijing 100084 P. R. China
| | - Jinlong Yang
- Hefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Zhikun Wu
- Key Laboratory of Materials PhysicsAnhui Key Laboratory of Nanomaterials and NanotechnologyCAS Center for Excellence in NanoscienceInstitute of Solid State PhysicsChinese Academy of Sciences Hefei 230031 P. R. China
- Institute of Physical Science and Information TechnologyAnhui University Hefei 230601 China
| |
Collapse
|
14
|
Zhuang S, Liao L, Yuan J, Wang C, Zhao Y, Xia N, Gan Z, Gu W, Li J, Deng H, Yang J, Wu Z. Kernel Homology in Gold Nanoclusters. Angew Chem Int Ed Engl 2018; 57:15450-15454. [PMID: 30290044 DOI: 10.1002/anie.201808997] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/21/2018] [Indexed: 11/10/2022]
Abstract
Homology is well known in organic chemistry; however, it has not yet been reported in nanochemistry. Herein, we introduce the concept of kernel homology to describe the phenomenon of metal nanoclusters sharing the same "functional group" in kernels with some similar properties. To illustrate this point, we synthesized two novel gold nanoclusters, Au44 (TBBT)26 and Au48 (TBBT)28 (TBBTH=4-tert-butylbenzenethiol), and solved their total structures by X-ray crystallography, which reveals that they have the same Au23 bi-icosahedron capped with a similar bottom cap (Au6 and Au8 , respectively) in the kernels. The two novel gold nanoclusters, together with the existing Au38 (PET)24 nanocluster (PETH=phenylethanethiol), have the same "functional group"-Au23 -in their kernels and have some similar properties (e.g., electrochemical properties); therefore, they are comparable to the homologues in organic chemistry.
Collapse
Affiliation(s)
- Shengli Zhuang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, P. R. China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Lingwen Liao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, P. R. China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Jinyun Yuan
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Chengming Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yan Zhao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, P. R. China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Nan Xia
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, P. R. China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Zibao Gan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, P. R. China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Wanmiao Gu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, P. R. China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Jin Li
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Jinlong Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhikun Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, P. R. China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| |
Collapse
|