1
|
Dong H, Qi S, Wang L, Chen X, Xiao Y, Wang Y, Sun B, Wang G, Chen S. Conductive Polymer Coated Layered Double Hydroxide as a Novel Sulfur Reservoir for Flexible Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300843. [PMID: 37035959 DOI: 10.1002/smll.202300843] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/04/2023] [Indexed: 06/19/2023]
Abstract
Lithium-sulfur battery (LSB) is widely regarded as the most promising next-generation energy storage system owing to its high theoretical capacity and low cost. However, the practical application of LSBs is mainly hampered by the low electronic conductivity of the sulfur cathode and the notorious "shuttle effect", which lead to high voltage polarization, severe over-charge behavior, and rapid capacity decay. To address these issues, a novel sulfur reservoir is synthesized by coating polypyrrole (PPy) thin film on hollow layered double hydroxide (LDH) (PPy@LDH). After compositing with sulfur, such PPy@LDH-S cathode shows a multi-functional effect to reserve lithium polysulfides (LiPSs). In addition, the unique architecture provides sufficient inner space to encapsulate the volume expansion and enhances the reaction kinetics of sulfur-based redox chemistry. Theoretical calculations have illustrated that the PPy@LDH has shown stronger chemical adsorption capability for LiPSs than those of porous carbon and LDH, preventing the shuttling of LiPSs and enhancing the nucleation affinity of liquid-solid conversion. As a result, the PPy@LDH-S electrode delivers a stable cycling performance and a superior rate capability. Flexible battery has demonstrated this PPy@LDH-S electrode can work properly with treatments of bending, folding, and even twisting, paving the way for wearable devices and flexible electronics.
Collapse
Affiliation(s)
- Hanghang Dong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Shuo Qi
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Lei Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Xianfei Chen
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Yao Xiao
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Yong Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Bing Sun
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia
| | - Guoxiu Wang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia
| | - Shuangqiang Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
2
|
Lv C, Cao H, Deng W, Zhao M, Miao Y, Guo C, Liu P, Wu Y. Carbon nanotube-embedded hollow carbon nanofibers as efficient hosts for advanced lithium-sulfur batteries. Dalton Trans 2023; 52:4700-4707. [PMID: 36930227 DOI: 10.1039/d3dt00288h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Lithium-sulfur (Li-S) batteries have attracted great research attention because of their high energy density and low cost. However, shuttling effects of polysulfides and insulation from elemental sulfur hinder their practical application. Herein, we report hollow carbon nanofibers filled with carbon nanotubes (denoted as HCNF/CNT) as host materials for sulfur to mitigate the shuttling behavior and improve the kinetics of insulative sulfur. The as-prepared HCNF/CNT with nano-conductive domains in the hollow carbon nanofibers enables high loading and efficient utilization of sulfur. Owing to their unique structural superiority, the sulfur-encapsulated HCNF/CNT cathode materials for Li-S batteries deliver excellent electrochemical performance, including high specific capacity of 1156 mA h g-1 at 0.2 C, good rate performance and cycling stability with a capacity retention of 77.2% after 200 cycles at 2 C. Such a unique structure can provide inspiration for the rational structural design of carbon materials as hosts for high performance Li-S batteries.
Collapse
Affiliation(s)
- Chenshan Lv
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Hailiang Cao
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Wei Deng
- Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Min Zhao
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Yanqin Miao
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Chunli Guo
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Peizhi Liu
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Yucheng Wu
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China. .,School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
3
|
Patil R, Liu S, Yadav A, Khaorapapong N, Yamauchi Y, Dutta S. Superstructures of Zeolitic Imidazolate Frameworks to Single- and Multiatom Sites for Electrochemical Energy Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203147. [PMID: 36323587 DOI: 10.1002/smll.202203147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/24/2022] [Indexed: 06/16/2023]
Abstract
The exploration of electrocatalysts with high catalytic activity and long-term stability for electrochemical energy conversion is significant yet remains challenging. Zeolitic imidazolate framework (ZIF)-derived superstructures are a source of atomic-site-containing electrocatalysts. These atomic sites anchor the guest encapsulation and self-assembly of aspheric polyhedral particles produced using microreactor fabrication. This review provides an overview of ZIF-derived superstructures by highlighting some of the key structural types, such as open carbon cages, 1D superstructures, hollow structures, and the interconversion of superstructures. The fundamentals and representative structures are outlined to demonstrate the role of superstructures in the construction of materials with atomic sites, such as single- and dual-atom materials. Then, the roles of ZIF-derived single-atom sites for the electroreduction of CO2 and electrochemical synthesis of H2 O2 are discussed, and their electrochemical performance for energy conversion is outlined. Finally, the perspective on advancing single- and dual-atom electrode-based electrochemical processes with enhanced redox activity and a low-impedance charge-transfer pathway for cathodes is provided. The challenges associated with ZIF-derived superstructures for electrochemical energy conversion are discussed.
Collapse
Affiliation(s)
- Rahul Patil
- Electrochemical Energy and Sensor Research Laboratory, Amity Institute of Click Chemistry Research and Studies, Amity University, 201303, Noida, India
| | - Shude Liu
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Anubha Yadav
- Electrochemical Energy and Sensor Research Laboratory, Amity Institute of Click Chemistry Research and Studies, Amity University, 201303, Noida, India
| | - Nithima Khaorapapong
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, 40002, Khon Kaen, Thailand
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Saikat Dutta
- Electrochemical Energy and Sensor Research Laboratory, Amity Institute of Click Chemistry Research and Studies, Amity University, 201303, Noida, India
| |
Collapse
|
4
|
Mubarak S, Dhamodharan D, Ghoderao PN, Byun HS. A systematic review on recent advances of metal–organic frameworks-based nanomaterials for electrochemical energy storage and conversion. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Hu P, Qin H, Hu K, Dai R, Wang Z, Huang K. Constructing a defect-rich hydroxide nanoenzyme sensor based on dielectric barrier discharge microplasma etching for sensitive detection of thiamine hydrochloride and hydrogen peroxide. J Colloid Interface Sci 2022; 628:597-606. [DOI: 10.1016/j.jcis.2022.07.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022]
|
6
|
Insertion of Carbon Skeleton in Ni/MoO2 Heterojunction with Porous Hollow Sphere for Efficient Alkaline Electrochemical Hydrogen production. J Colloid Interface Sci 2022; 627:21-27. [DOI: 10.1016/j.jcis.2022.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/22/2022] [Accepted: 06/01/2022] [Indexed: 11/23/2022]
|
7
|
Sun D, Li J, Shen T, An S, Qi B, Song YF. In Situ Construction of MIL-100@NiMn-LDH Hierarchical Architectures for Highly Selective Photoreduction of CO 2 to CH 4. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16369-16378. [PMID: 35354278 DOI: 10.1021/acsami.2c02888] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Layered double hydroxides (LDHs) are considered a promising catalyst for photocatalytic CO2 reduction due to their broad photoresponse, facile channels for electron transfer, and the presence of abundant defects. Herein, we reported for the first time the fabrication of a novel photocatalyst MIL-100@NiMn-LDH with a hierarchical architecture by selecting MIL-100 (Mn) as a template to provide Mn3+ for the in situ growth of ultrathin NiMn-LDH nanosheets. Moreover, the in situ growth strategy exhibited excellent universality toward constructing MIL-100@LDH hierarchical architectures. When applied in the photocatalytic CO2 reduction reaction, the as-prepared MIL-100@NiMn-LDH exhibited excellent CH4 selectivity of 88.8% (2.84 μmol h-1), while the selectivity of H2 was reduced to 1.8% under visible light irradiation (λ > 500 nm). Such excellent catalytic performance can be attributed to the fact that (a) the MIL-100@NiMn-LDH hierarchical architectures with exposed catalytic active sites helped to enhance the CO2 adsorption and activation and (b) the presence of rich oxygen vacancies and coordinately unsaturated metal sites in MIL-100@NiMn-LDH that optimized the band gap and accelerated the separation/transport of photoinduced charges.
Collapse
Affiliation(s)
- Danzhong Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 P. R. China
| | - Jiao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 P. R. China
| | - Tianyang Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 P. R. China
| | - Sai An
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 P. R. China
| | - Bo Qi
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 P. R. China
| | - Yu-Fei Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 P. R. China
| |
Collapse
|
8
|
Li J, Qiu W, Liu X, Zhang Y, Zhao Y. NiCo‐Layered Double Hydroxide to Composite with Sulfur as Cathodes for High‐Performance Lithium‐Sulfur Batteries. ChemElectroChem 2022. [DOI: 10.1002/celc.202101211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jing Li
- School of Materials Science and Engineering State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin 300130 China
| | - Weilong Qiu
- School of Materials Science and Engineering State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin 300130 China
| | - Xin Liu
- School of Materials Science and Engineering State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin 300130 China
| | - Yongguang Zhang
- School of Materials Science and Engineering State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin 300130 China
| | - Yan Zhao
- School of Materials Science and Engineering State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin 300130 China
| |
Collapse
|
9
|
Yang D, Liang Z, Tang P, Zhang C, Tang M, Li Q, Biendicho JJ, Li J, Heggen M, Dunin-Borkowski RE, Xu M, Llorca J, Arbiol J, Morante JR, Chou SL, Cabot A. A High Conductivity 1D π-d Conjugated Metal-Organic Framework with Efficient Polysulfide Trapping-Diffusion-Catalysis in Lithium-Sulfur Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108835. [PMID: 35043500 DOI: 10.1002/adma.202108835] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/07/2022] [Indexed: 06/14/2023]
Abstract
The shuttling behavior and sluggish conversion kinetics of the intermediate lithium polysulfides (LiPS) represent the main obstructions to the practical application of lithium-sulfur batteries (LSBs). Herein, a 1D π-d conjugated metal-organic framework (MOF), Ni-MOF-1D, is presented as an efficient sulfur host to overcome these limitations. Experimental results and density functional theory calculations demonstrate that Ni-MOF-1D is characterized by a remarkable binding strength for trapping soluble LiPS species. Ni-MOF-1D also acts as an effective catalyst for S reduction during the discharge process and Li2 S oxidation during the charging process. In addition, the delocalization of electrons in the π-d system of Ni-MOF-1D provides a superior electrical conductivity to improve electron transfer. Thus, cathodes based on Ni-MOF-1D enable LSBs with excellent performance, for example, impressive cycling stability with over 82% capacity retention over 1000 cycles at 3 C, superior rate performance of 575 mAh g-1 at 8 C, and a high areal capacity of 6.63 mAh cm-2 under raised sulfur loading of 6.7 mg cm-2 . The strategies and advantages here demonstrated can be extended to a broader range of π-d conjugated MOFs materials, which the authors believe have a high potential as sulfur hosts in LSBs.
Collapse
Affiliation(s)
- Dawei Yang
- Catalonia Institute for Energy Research - IREC, Sant Adrià de Besòs, Barcelona, 08930, Spain
- Department of Electronic and Biomedical Engineering, Universitat de Barcelona, Barcelona, 08028, Spain
| | - Zhifu Liang
- Catalonia Institute for Energy Research - IREC, Sant Adrià de Besòs, Barcelona, 08930, Spain
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Pengyi Tang
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg, Institute Forschungszentrum Jü lich GmbH, Jülich, 52425, Germany
- State Key Laboratory of Information Functional Materials, 2020 X-Lab, ShangHai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Chaoqi Zhang
- Catalonia Institute for Energy Research - IREC, Sant Adrià de Besòs, Barcelona, 08930, Spain
- Department of Electronic and Biomedical Engineering, Universitat de Barcelona, Barcelona, 08028, Spain
| | - Mingxue Tang
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100094, China
| | - Qizhen Li
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Jordi Jacas Biendicho
- Catalonia Institute for Energy Research - IREC, Sant Adrià de Besòs, Barcelona, 08930, Spain
| | - Junshan Li
- Institute of Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Marc Heggen
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg, Institute Forschungszentrum Jü lich GmbH, Jülich, 52425, Germany
| | - Rafal E Dunin-Borkowski
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg, Institute Forschungszentrum Jü lich GmbH, Jülich, 52425, Germany
| | - Ming Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jordi Llorca
- Institute of Energy Technologies, Department of Chemical Engineering and Barcelona Research Center in Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, Barcelona, 08019, Spain
| | - Jordi Arbiol
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Joan Ramon Morante
- Catalonia Institute for Energy Research - IREC, Sant Adrià de Besòs, Barcelona, 08930, Spain
- Department of Electronic and Biomedical Engineering, Universitat de Barcelona, Barcelona, 08028, Spain
| | - Shu-Lei Chou
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Andreu Cabot
- Catalonia Institute for Energy Research - IREC, Sant Adrià de Besòs, Barcelona, 08930, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain
| |
Collapse
|
10
|
Liu H, Jia G, Zhu S, Sheng J, Zhang Z, Li Y. Functionalized Carbon-Based Composite Materials for Cathode Application of Lithium-Sulfur Batteries. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21080381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Gu LL, Wang C, Qiu SY, Wang KX, Gao XT, Zuo PJ, Sun KN, Zhu XD. Cobalt-iron oxide nanotubes decorated with polyaniline as advanced cathode hosts for Li-S batteries. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138873] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Xie D, Mei S, Xu Y, Quan T, Härk E, Kochovski Z, Lu Y. Efficient Sulfur Host Based on Yolk-Shell Iron Oxide/Sulfide-Carbon Nanospindles for Lithium-Sulfur Batteries. CHEMSUSCHEM 2021; 14:1404-1413. [PMID: 33440068 PMCID: PMC7986775 DOI: 10.1002/cssc.202002731] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Numerous nanostructured materials have been reported as efficient sulfur hosts to suppress the problematic "shuttling" of lithium polysulfides (LiPSs) in lithium-sulfur (Li-S) batteries. However, direct comparison of these materials in their efficiency of suppressing LiPSs shuttling is challenging, owing to the structural and morphological differences between individual materials. This study introduces a simple route to synthesize a series of sulfur host materials with the same yolk-shell nanospindle morphology but tunable compositions (Fe3 O4 , FeS, or FeS2 ), which allows for a systematic investigation into the specific effect of chemical composition on the electrochemical performances of Li-S batteries. Among them, the S/FeS2 -C electrode exhibits the best performance and delivers an initial capacity of 877.6 mAh g-1 at 0.5 C with a retention ratio of 86.7 % after 350 cycles. This approach can also be extended to the optimization of materials for other functionalities and applications.
Collapse
Affiliation(s)
- Dongjiu Xie
- Department of Electrochemical Energy StorageHelmholtz-Zentrum Berlin für Materialien und EnergieHahn-Meitner-Platz 114109BerlinGermany
- University of PotsdamInstitute of Chemistry14476PotsdamGermany
| | - Shilin Mei
- Department of Electrochemical Energy StorageHelmholtz-Zentrum Berlin für Materialien und EnergieHahn-Meitner-Platz 114109BerlinGermany
| | - Yaolin Xu
- Department of Electrochemical Energy StorageHelmholtz-Zentrum Berlin für Materialien und EnergieHahn-Meitner-Platz 114109BerlinGermany
| | - Ting Quan
- Department of Electrochemical Energy StorageHelmholtz-Zentrum Berlin für Materialien und EnergieHahn-Meitner-Platz 114109BerlinGermany
| | - Eneli Härk
- Department of Electrochemical Energy StorageHelmholtz-Zentrum Berlin für Materialien und EnergieHahn-Meitner-Platz 114109BerlinGermany
| | - Zdravko Kochovski
- Department of Electrochemical Energy StorageHelmholtz-Zentrum Berlin für Materialien und EnergieHahn-Meitner-Platz 114109BerlinGermany
| | - Yan Lu
- Department of Electrochemical Energy StorageHelmholtz-Zentrum Berlin für Materialien und EnergieHahn-Meitner-Platz 114109BerlinGermany
- University of PotsdamInstitute of Chemistry14476PotsdamGermany
| |
Collapse
|
13
|
Li M, Fu K, Wang Z, Cao C, Yang J, Zhai Q, Zhou Z, Ji J, Xue Y, Tang C. Enhanced Adsorption of Polysulfides on Carbon Nanotubes/Boron Nitride Fibers for High-Performance Lithium-Sulfur Batteries. Chemistry 2020; 26:17567-17573. [PMID: 32965742 DOI: 10.1002/chem.202003807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Indexed: 11/07/2022]
Abstract
Lithium-sulfur (Li-S) batteries are one of the most promising high-energy-density storage systems. However, serious capacity attenuation and poor cycling stability induced by the shuttle effect of polysulfide intermediates can impede the practical application of Li-S batteries. Herein we report a novel sulfur cathode by intertwining multi-walled carbon nanotubes (CNTs) and porous boron nitride fibers (BNFs) for the subsequent loading of sulfur. This structural design enables trapping of active sulfur and serves to localize the soluble polysulfide within the cathode region, leading to low active material loss. Compared with CNTs/S, CNTs/BNFs/S cathodes deliver a high initial capacity of 1222 mAh g-1 at 0.1 C. Upon increasing the current density to 4 C, the cell retained a capacity of 482 mAh g-1 after 500 cycles with a capacity decay of only 0.044 % per cycle. The design of CNTs/BNFs/S gives new insight on how to optimize cathodes for Li-S batteries.
Collapse
Affiliation(s)
- Mengyuan Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, PR China.,Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, PR China
| | - Kun Fu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, PR China.,Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, PR China
| | - Zhixuan Wang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, PR China
| | - Chaochao Cao
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, PR China.,Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, PR China
| | - Jingwen Yang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, PR China.,Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, PR China
| | - Qinghong Zhai
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, PR China.,Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, PR China
| | - Zheng Zhou
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, PR China.,Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, PR China
| | - Jiawei Ji
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, PR China.,Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, PR China
| | - Yanming Xue
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, PR China.,Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, PR China
| | - Chengchun Tang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, PR China.,Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, PR China
| |
Collapse
|
14
|
Qiao Z, Lin L, Yan X, Guo W, Chen Q, Xie Q, Han X, Lin J, Wang L, Peng DL. Function and Application of Defect Chemistry in High-Capacity Electrode Materials for Li-Based Batteries. Chem Asian J 2020; 15:3620-3636. [PMID: 32985136 DOI: 10.1002/asia.202000904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/22/2020] [Indexed: 01/16/2023]
Abstract
Current commercial Li-based batteries are approaching their energy density limitation, yet still cannot satisfy the energy density demand of the high-end devices. Hence, it is critical to developing advanced electrode materials with high specific capacity. However, these electrode materials are facing challenges of severe structural degradation and fast capacity fading. Among various strategies, constructing defects in electrode materials holds great promise in addressing these issues. Herein, we summarize a series of significant defect engineering in the high-capacity electrode materials for Li-based batteries. The detailed retrospective on defects specification, function mechanism, and corresponding application achievements on these electrodes are discussed from the view of point, line, planar, volume defects. Defect engineering can not only stabilize the structure and enhance electric/ionic conductivity, but also act as active sites to improve the ionic storage and bonding ability of electrode materials to Li metal. We hope this review can spark more perspectives on evaluating high-energy-density Li-based batteries.
Collapse
Affiliation(s)
- Zhensong Qiao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P.R. China
| | - Liang Lin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P.R. China
| | - Xiaolin Yan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P.R. China
| | - Weibin Guo
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P.R. China
| | - Qiulin Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P.R. China
| | - Qingshui Xie
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P.R. China
| | - Xiao Han
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P.R. China
| | - Jie Lin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P.R. China
| | - Laisen Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P.R. China
| | - Dong-Liang Peng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P.R. China
| |
Collapse
|
15
|
Deng D, Wu Q. Hollow TiN Microspheres Synthesized by a Template‐Free Method as a Matrix for High Performance Li‐S Battery. ChemistrySelect 2020. [DOI: 10.1002/slct.202002641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ding‐Rong Deng
- Department College of Mechanical and Energy EngineeringKey Laboratory of Energy Cleaning Utilization, Development, Cleaning Combustion and Energy Utilization Research Center of Fujian Province, Jimei University Xiamen 361021 China
| | - Qi‐Hui Wu
- Department College of Mechanical and Energy EngineeringKey Laboratory of Energy Cleaning Utilization, Development, Cleaning Combustion and Energy Utilization Research Center of Fujian Province, Jimei University Xiamen 361021 China
| |
Collapse
|
16
|
Wang Y, Wang S, Zhang SL, Lou XW(D. Formation of Hierarchical FeCoS
2
–CoS
2
Double‐Shelled Nanotubes with Enhanced Performance for Photocatalytic Reduction of CO
2. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004609] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yan Wang
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Sibo Wang
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Song Lin Zhang
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Xiong Wen (David) Lou
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| |
Collapse
|
17
|
Wang Y, Wang S, Zhang SL, Lou XW(D. Formation of Hierarchical FeCoS
2
–CoS
2
Double‐Shelled Nanotubes with Enhanced Performance for Photocatalytic Reduction of CO
2. Angew Chem Int Ed Engl 2020; 59:11918-11922. [DOI: 10.1002/anie.202004609] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Yan Wang
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Sibo Wang
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Song Lin Zhang
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Xiong Wen (David) Lou
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| |
Collapse
|
18
|
Ali T, Yan C. 2 D Materials for Inhibiting the Shuttle Effect in Advanced Lithium-Sulfur Batteries. CHEMSUSCHEM 2020; 13:1447-1479. [PMID: 31436389 DOI: 10.1002/cssc.201901981] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/19/2019] [Indexed: 05/07/2023]
Abstract
A lithium-sulfur battery is a new energy storage device with low cost, high energy storage density, and environmental protection. It is an important tool for future battery systems. However, owing to the shuttle of polysulfides, insulation performance of sulfur, and volume change, capacity decay and cycle instability result, which limits the future application of lithium-sulfur batteries. 2 D materials, such as graphene, carbide, nitride, sulfide, oxide, and their aggregates, provide high surface area to improve sulfur utilization and cycle performance. In this Minireview, various 2 D materials are summarized that use physical confinement and chemical interactions to inhibit the shuttle of polysulfides. We outline the controlled spacing of 2 D materials, abundant active sites, and large transverse size separators and interlayers. The effects on the interlayer and separator based on 2 D materials at the lithium anode prevent polysulfide dissolution are also reviewed. Finally, the challenges and prospects of 2 D materials for lithium-sulfur batteries are discussed.
Collapse
Affiliation(s)
- Tariq Ali
- Soochow Institute for Energy and Materials Innovations, College of Energy, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, P.R. China
| | - Chenglin Yan
- Soochow Institute for Energy and Materials Innovations, College of Energy, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, P.R. China
| |
Collapse
|
19
|
Kong F, Zhang W, Sun L, Huo L, Zhao H. Interface Electronic Coupling in Hierarchical FeLDH(FeCo)/Co(OH) 2 Arrays for Efficient Electrocatalytic Oxygen Evolution. CHEMSUSCHEM 2019; 12:3592-3601. [PMID: 31087548 DOI: 10.1002/cssc.201900943] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/02/2019] [Indexed: 05/14/2023]
Abstract
The oxygen evolution reaction (OER) with sluggish kinetics is the key half-cell reaction for several sustainable energy systems, such as electrochemical water splitting, fuel cells, and rechargeable metal-air batteries. Two-dimensional transition-metal hydroxides have good prospects for the OER. Herein, 2D hierarchical FeLDH(FeCo)/Co(OH)2 (LDH=layered double hydroxide) arrays were fabricated by growing 2D-ZIF-67 (ZIF=zeolitic imidazolate framework) on carbon cloth, transformation of 2D-ZIF-67 into Co(OH)2 , and electrodeposition of FeLDH(FeCo) on Co(OH)2 at ambient temperature. The optimized hierarchical catalyst exhibits high OER activity that requires a small overpotential of only 242 mV to drive 10 mA cm-2 (279 mV for 100 mA cm-2 ) and prolonged durability for 100 h at 20 mA cm-2 in 1 m KOH. The FeLDH(FeCo)/Co(OH)2 interfaces are observed to be the electrocatalytically active centers for the OER. The interfaces contribute to accelerating the OER kinetics owing to fast transfer of intermediate oxygen species. Furthermore, the FeCo alloy promotes electron transfer among the newly formed interfaces related to CoOOH in the OER process, which leads to improved durability. This work gives insight into the design and synthesis of hierarchical bimetallic hydroxide arrays with high OER activity and durability, as well as understanding of the origin of the OER promotion by metals and metal hydroxides.
Collapse
Affiliation(s)
- Fanhao Kong
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin, 150080, P. R. China
| | - Wenwen Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, P. R. China
| | - Liping Sun
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin, 150080, P. R. China
| | - Lihua Huo
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin, 150080, P. R. China
| | - Hui Zhao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin, 150080, P. R. China
| |
Collapse
|
20
|
He Y, Qiao Y, Chang Z, Cao X, Jia M, He P, Zhou H. Developing A “Polysulfide‐Phobic” Strategy to Restrain Shuttle Effect in Lithium–Sulfur Batteries. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906055] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yibo He
- Energy Technology Research Institute National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1, Umezono Tsukuba 305-8568 Japan
- Graduate School of System and Information Engineering University of Tsukuba 1-1-1, Tennoudai Tsukuba 305-8573 Japan
| | - Yu Qiao
- Energy Technology Research Institute National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1, Umezono Tsukuba 305-8568 Japan
| | - Zhi Chang
- Energy Technology Research Institute National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1, Umezono Tsukuba 305-8568 Japan
- Graduate School of System and Information Engineering University of Tsukuba 1-1-1, Tennoudai Tsukuba 305-8573 Japan
| | - Xin Cao
- Energy Technology Research Institute National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1, Umezono Tsukuba 305-8568 Japan
- Graduate School of System and Information Engineering University of Tsukuba 1-1-1, Tennoudai Tsukuba 305-8573 Japan
| | - Min Jia
- Energy Technology Research Institute National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1, Umezono Tsukuba 305-8568 Japan
- Graduate School of System and Information Engineering University of Tsukuba 1-1-1, Tennoudai Tsukuba 305-8573 Japan
| | - Ping He
- Center of Energy Storage Materials&Technology College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials National Laboratory of Solid State Microstructures Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210093 P. R. China
| | - Haoshen Zhou
- Energy Technology Research Institute National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1, Umezono Tsukuba 305-8568 Japan
- Center of Energy Storage Materials&Technology College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials National Laboratory of Solid State Microstructures Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210093 P. R. China
- Graduate School of System and Information Engineering University of Tsukuba 1-1-1, Tennoudai Tsukuba 305-8573 Japan
| |
Collapse
|
21
|
He Y, Qiao Y, Chang Z, Cao X, Jia M, He P, Zhou H. Developing A “Polysulfide‐Phobic” Strategy to Restrain Shuttle Effect in Lithium–Sulfur Batteries. Angew Chem Int Ed Engl 2019; 58:11774-11778. [DOI: 10.1002/anie.201906055] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Yibo He
- Energy Technology Research Institute National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1, Umezono Tsukuba 305-8568 Japan
- Graduate School of System and Information Engineering University of Tsukuba 1-1-1, Tennoudai Tsukuba 305-8573 Japan
| | - Yu Qiao
- Energy Technology Research Institute National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1, Umezono Tsukuba 305-8568 Japan
| | - Zhi Chang
- Energy Technology Research Institute National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1, Umezono Tsukuba 305-8568 Japan
- Graduate School of System and Information Engineering University of Tsukuba 1-1-1, Tennoudai Tsukuba 305-8573 Japan
| | - Xin Cao
- Energy Technology Research Institute National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1, Umezono Tsukuba 305-8568 Japan
- Graduate School of System and Information Engineering University of Tsukuba 1-1-1, Tennoudai Tsukuba 305-8573 Japan
| | - Min Jia
- Energy Technology Research Institute National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1, Umezono Tsukuba 305-8568 Japan
- Graduate School of System and Information Engineering University of Tsukuba 1-1-1, Tennoudai Tsukuba 305-8573 Japan
| | - Ping He
- Center of Energy Storage Materials&Technology College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials National Laboratory of Solid State Microstructures Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210093 P. R. China
| | - Haoshen Zhou
- Energy Technology Research Institute National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1, Umezono Tsukuba 305-8568 Japan
- Center of Energy Storage Materials&Technology College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials National Laboratory of Solid State Microstructures Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210093 P. R. China
- Graduate School of System and Information Engineering University of Tsukuba 1-1-1, Tennoudai Tsukuba 305-8573 Japan
| |
Collapse
|
22
|
Zhao M, Peng H, Zhang Z, Li B, Chen X, Xie J, Chen X, Wei J, Zhang Q, Huang J. Activating Inert Metallic Compounds for High‐Rate Lithium–Sulfur Batteries Through In Situ Etching of Extrinsic Metal. Angew Chem Int Ed Engl 2019; 58:3779-3783. [DOI: 10.1002/anie.201812062] [Citation(s) in RCA: 233] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/28/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Meng Zhao
- School of Materials Science and EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
- Advanced Research Institute of Multidisciplinary ScienceBeijing Institute of Technology Beijing 100081 P. R. China
| | - Hong‐Jie Peng
- Department of Chemical EngineeringTsinghua University Beijing 100084 P. R. China
| | - Ze‐Wen Zhang
- Department of Chemical EngineeringTsinghua University Beijing 100084 P. R. China
| | - Bo‐Quan Li
- Department of Chemical EngineeringTsinghua University Beijing 100084 P. R. China
| | - Xiao Chen
- Department of Chemical EngineeringTsinghua University Beijing 100084 P. R. China
| | - Jin Xie
- Department of Chemical EngineeringTsinghua University Beijing 100084 P. R. China
| | - Xiang Chen
- Department of Chemical EngineeringTsinghua University Beijing 100084 P. R. China
| | - Jun‐Yu Wei
- School of Materials Science and EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
- Advanced Research Institute of Multidisciplinary ScienceBeijing Institute of Technology Beijing 100081 P. R. China
| | - Qiang Zhang
- Department of Chemical EngineeringTsinghua University Beijing 100084 P. R. China
| | - Jia‐Qi Huang
- School of Materials Science and EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
- Advanced Research Institute of Multidisciplinary ScienceBeijing Institute of Technology Beijing 100081 P. R. China
| |
Collapse
|
23
|
Zhao M, Peng H, Zhang Z, Li B, Chen X, Xie J, Chen X, Wei J, Zhang Q, Huang J. Activating Inert Metallic Compounds for High‐Rate Lithium–Sulfur Batteries Through In Situ Etching of Extrinsic Metal. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812062] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Meng Zhao
- School of Materials Science and EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
- Advanced Research Institute of Multidisciplinary ScienceBeijing Institute of Technology Beijing 100081 P. R. China
| | - Hong‐Jie Peng
- Department of Chemical EngineeringTsinghua University Beijing 100084 P. R. China
| | - Ze‐Wen Zhang
- Department of Chemical EngineeringTsinghua University Beijing 100084 P. R. China
| | - Bo‐Quan Li
- Department of Chemical EngineeringTsinghua University Beijing 100084 P. R. China
| | - Xiao Chen
- Department of Chemical EngineeringTsinghua University Beijing 100084 P. R. China
| | - Jin Xie
- Department of Chemical EngineeringTsinghua University Beijing 100084 P. R. China
| | - Xiang Chen
- Department of Chemical EngineeringTsinghua University Beijing 100084 P. R. China
| | - Jun‐Yu Wei
- School of Materials Science and EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
- Advanced Research Institute of Multidisciplinary ScienceBeijing Institute of Technology Beijing 100081 P. R. China
| | - Qiang Zhang
- Department of Chemical EngineeringTsinghua University Beijing 100084 P. R. China
| | - Jia‐Qi Huang
- School of Materials Science and EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
- Advanced Research Institute of Multidisciplinary ScienceBeijing Institute of Technology Beijing 100081 P. R. China
| |
Collapse
|