1
|
Feng Q, Ding R, Hou Y, Zhang Z, Zhang Y, Liu H, Guo C, He G, Zheng B, Zhang Y, Zhang M. Highly Efficient Self-Assembly of Heterometallic [2]Catenanes and Cyclic Bis[2]catenanes via Orthogonal Metal-Coordination Interactions. Angew Chem Int Ed Engl 2024; 63:e202407923. [PMID: 38738617 DOI: 10.1002/anie.202407923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/14/2024]
Abstract
Although catenated cages have been widely constructed due to their unique and elegant topological structures, cyclic catenanes formed by the connection of multiple catenane units have been rarely reported. Herein, based on the orthogonal metal-coordination-driven self-assembly, we prepare a series of heterometallic [2]catenanes and cyclic bis[2]catenanes, whose structures are clearly evidenced by single-crystal X-ray analysis. Owing to the multiple positively charged nature, as well as the potential synergistic effect of the Cu(I) and Pt(II) metal ions, the cyclic bis[2]catenanes display broad-spectrum antibacterial activity. This work not only provides an efficient strategy for the construction of heterometallic [2]catenanes and cyclic bis[2]catenanes but also explores their applications as superior antibacterial agents, which will promote the construction of advanced supramolecular structures for biomedical applications.
Collapse
Affiliation(s)
- Qian Feng
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Rui Ding
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yali Hou
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zeyuan Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yafei Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Haifei Liu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Gang He
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Bo Zheng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
2
|
Lewis JEM. Pseudo-heterolepticity in Low-Symmetry Metal-Organic Cages. Angew Chem Int Ed Engl 2022; 61:e202212392. [PMID: 36074024 PMCID: PMC9828238 DOI: 10.1002/anie.202212392] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Indexed: 01/12/2023]
Abstract
Heteroleptic metal-organic cages, formed through integrative self-assembly of ligand mixtures, are highly attractive as reduced symmetry supramolecular hosts. Ensuring high-fidelity, non-statistical self-assembly, however, presents a significant challenge in molecular engineering due to the inherent difficulty in predicting thermodynamic energy landscapes. In this work, two conceptual strategies are described that circumvent this issue, using ligand design strategies to access structurally sophisticated metal-organic hosts. Using these approaches, it was possible to realise cavity environments described by two inequivalent, unsymmetrical ligand frameworks, representing a significant step forward in the construction of highly anisotropic confined spaces.
Collapse
Affiliation(s)
- James E. M. Lewis
- School of ChemistryUniversity of BirminghamEdgbastonBirmingham B15 2TTUK
- Previous address: Department of ChemistryMolecular Sciences Research HubImperial College London82 Wood LaneLondonW12 0BZUK
| |
Collapse
|
3
|
Lewis J. Pseudo‐heterolepticity in Low‐Symmetry Metal‐Organic Cages. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202212392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- James Lewis
- University of Birmingham School of Chemistry Edgbaston B15 2TT Birmingham UNITED KINGDOM
| |
Collapse
|
4
|
Lisboa LS, Preston D, McAdam CJ, Wright LJ, Hartinger CG, Crowley JD. Heterotrimetallic Double Cavity Cages: Syntheses and Selective Guest Binding. Angew Chem Int Ed Engl 2022; 61:e202201700. [PMID: 35194905 PMCID: PMC9310627 DOI: 10.1002/anie.202201700] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Indexed: 11/29/2022]
Abstract
A strategy for the generation of heterotrimetallic double cavity (DC) cages [Pdn Ptm L4 ]6+ (DC1: n=1, m=2; and DC2: n=2, m=1) is reported. The DC cages were generated by combining an inert platinum(II) tetrapyridylaldehyde complex with a suitably substituted pyridylamine and PdII ions. 1 H and DOSY nuclear magnetic resonance spectroscopy (NMR) and electrospray ionization mass spectrometry (ESIMS) data were consistent with the formation of the DC architectures. DC1 and DC2 were shown to interact with several different guest molecules. The structure of DC1, which features two identical cavities, binding two 2,6-diaminoanthraquinone (DAQ) guest molecules was determined by single-crystal X-ray crystallography. In addition, DC1 was shown to bind two molecules of 5-fluorouracil (5-FU) in a statistical (non-cooperative) manner. In contrast, DC2, which features two different cage cavities, was found to interact with two different guests, 5-FU and cisplatin, selectively.
Collapse
Affiliation(s)
- Lynn S. Lisboa
- Department of ChemistryUniversity of OtagoPO Box 56Dunedin9054New Zealand
| | - Dan Preston
- Research School of ChemistryAustralian National UniversityCanberraACT 0200Australia
| | - C. John McAdam
- Department of ChemistryUniversity of OtagoPO Box 56Dunedin9054New Zealand
| | - L. James Wright
- School of Chemical SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Christian G. Hartinger
- School of Chemical SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - James D. Crowley
- Department of ChemistryUniversity of OtagoPO Box 56Dunedin9054New Zealand
| |
Collapse
|
5
|
Lisboa LS, Preston D, McAdam CJ, Wright LJ, Hartinger CG, Crowley JD. Heterotrimetallic Double Cavity Cages: Syntheses and Selective Guest Binding. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lynn S. Lisboa
- Department of Chemistry University of Otago PO Box 56 Dunedin 9054 New Zealand
| | - Dan Preston
- Research School of Chemistry Australian National University Canberra ACT 0200 Australia
| | - C. John McAdam
- Department of Chemistry University of Otago PO Box 56 Dunedin 9054 New Zealand
| | - L. James Wright
- School of Chemical Sciences University of Auckland Private Bag 92019 Auckland 1142 New Zealand
| | - Christian G. Hartinger
- School of Chemical Sciences University of Auckland Private Bag 92019 Auckland 1142 New Zealand
| | - James D. Crowley
- Department of Chemistry University of Otago PO Box 56 Dunedin 9054 New Zealand
| |
Collapse
|
6
|
Wu K, Zhang B, Drechsler C, Holstein JJ, Clever GH. Rückgrat‐verknüpfte Liganden erhöhen die Vielfalt in heteroleptischen Koordinationskäfigen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012425] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Kai Wu
- Fakultät für Chemie und Chemische Biologie TU Dortmund Otto-Hahn Straße 6 44227 Dortmund Deutschland
| | - Bo Zhang
- Fakultät für Chemie und Chemische Biologie TU Dortmund Otto-Hahn Straße 6 44227 Dortmund Deutschland
| | - Christoph Drechsler
- Fakultät für Chemie und Chemische Biologie TU Dortmund Otto-Hahn Straße 6 44227 Dortmund Deutschland
| | - Julian J. Holstein
- Fakultät für Chemie und Chemische Biologie TU Dortmund Otto-Hahn Straße 6 44227 Dortmund Deutschland
| | - Guido H. Clever
- Fakultät für Chemie und Chemische Biologie TU Dortmund Otto-Hahn Straße 6 44227 Dortmund Deutschland
| |
Collapse
|
7
|
Wu K, Zhang B, Drechsler C, Holstein JJ, Clever GH. Backbone-Bridging Promotes Diversity in Heteroleptic Cages. Angew Chem Int Ed Engl 2020; 60:6403-6407. [PMID: 33113268 PMCID: PMC7986237 DOI: 10.1002/anie.202012425] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Indexed: 01/17/2023]
Abstract
The combination of shape-complementary bis-monodentate ligands LA and LB with PdII cations yields heteroleptic cages cis-[Pd2 LA 2 LB 2 ] by self-sorting. Herein, we report how such assemblies can be diversified by introduction of covalent backbone bridges between two LA units. Together with solvent and guest effects, the flexibility of these linkers can modulate nuclearity, topology, and number of cavities in a family of four structurally diverse assemblies. Ligand LA1 , with flexible linker, reacts in CH3 CN with its LB counterpart to a tetranuclear dimer D1. In DMSO, however, a trinuclear pseudo-tetrahedron T1 is formed. The product of LA2 , with rigid linker, looks similar to D1, but with a rotated ligand arrangement. In presence of an anionic guest, this dimer D2 transforms and a hexanuclear prismatic barrel P2 crystallizes. We demonstrate how controlling a ligand's coordination mode can trigger structural differentiation and increase complexity in metallo-supramolecular assembly.
Collapse
Affiliation(s)
- Kai Wu
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Bo Zhang
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Christoph Drechsler
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Julian J Holstein
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Guido H Clever
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| |
Collapse
|
8
|
Kumar A, Mukherjee PS. Multicomponent Self‐Assembly of Pd
II
/Pt
II
Interlocked Molecular Cages: Cage‐to‐Cage Conversion and Self‐Sorting in Aqueous Medium. Chemistry 2020; 26:4842-4849. [DOI: 10.1002/chem.202000122] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/05/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Atul Kumar
- Inorganic and Physical Chemistry DepartmentIndian Institute of Science Bangalore 560012 India
| | | |
Collapse
|
9
|
Li P, Xu S, Yu C, Li Z, Xu J, Li Z, Zou L, Leng X, Gao S, Liu Z, Liu X, Zhang S. De Novo Construction of Catenanes with Dissymmetric Cages by Space‐Discriminative Post‐Assembly Modification. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Pan Li
- Frontiers Science Center for Transformative MoleculesShanghai Key Laboratory of Electrical Insulation and Thermal AgingSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Shijun Xu
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST)Ministry of EducationEast China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Chunyang Yu
- Frontiers Science Center for Transformative MoleculesShanghai Key Laboratory of Electrical Insulation and Thermal AgingSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Zi‐Ying Li
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST)Ministry of EducationEast China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Jianping Xu
- Frontiers Science Center for Transformative MoleculesShanghai Key Laboratory of Electrical Insulation and Thermal AgingSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Zi‐Mu Li
- Frontiers Science Center for Transformative MoleculesShanghai Key Laboratory of Electrical Insulation and Thermal AgingSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Lingyi Zou
- Frontiers Science Center for Transformative MoleculesShanghai Key Laboratory of Electrical Insulation and Thermal AgingSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Xuebing Leng
- State Key Laboratory of Organometallic ChemistryShanghai, Institute of Organic ChemistryChinese Academy of Sciences Shanghai 200032 China
| | - Shan Gao
- Neurological Department, Shanghai Jiao Tong University Affiliated Sixth People's HospitalSouth Campus Shanghai 200240 China
| | - Zhiqiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral ChemicalsZhejiang University of Technology Hangzhou 310014 China
| | - Xiaoyun Liu
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST)Ministry of EducationEast China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Shaodong Zhang
- Frontiers Science Center for Transformative MoleculesShanghai Key Laboratory of Electrical Insulation and Thermal AgingSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
10
|
Li P, Xu S, Yu C, Li Z, Xu J, Li Z, Zou L, Leng X, Gao S, Liu Z, Liu X, Zhang S. De Novo Construction of Catenanes with Dissymmetric Cages by Space‐Discriminative Post‐Assembly Modification. Angew Chem Int Ed Engl 2020; 59:7113-7121. [DOI: 10.1002/anie.202000442] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Pan Li
- Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Shijun Xu
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Chunyang Yu
- Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Zi‐Ying Li
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Jianping Xu
- Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Zi‐Mu Li
- Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Lingyi Zou
- Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Xuebing Leng
- State Key Laboratory of Organometallic Chemistry Shanghai, Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 China
| | - Shan Gao
- Neurological Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus Shanghai 200240 China
| | - Zhiqiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals Zhejiang University of Technology Hangzhou 310014 China
| | - Xiaoyun Liu
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Shaodong Zhang
- Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
11
|
Domoto Y, Abe M, Kikuchi T, Fujita M. Self‐Assembly of Coordination Polyhedra with Highly Entangled Faces Induced by Metal–Acetylene Interactions. Angew Chem Int Ed Engl 2020; 59:3450-3454. [DOI: 10.1002/anie.201913142] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Yuya Domoto
- Department of Applied ChemistrySchool of EngineeringThe University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Masahiro Abe
- Department of Applied ChemistrySchool of EngineeringThe University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Takashi Kikuchi
- Rigaku Corporation 3-9-12 Matsubaracho, Akishima Tokyo 196-8666 Japan
| | - Makoto Fujita
- Department of Applied ChemistrySchool of EngineeringThe University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
12
|
Domoto Y, Abe M, Kikuchi T, Fujita M. Self‐Assembly of Coordination Polyhedra with Highly Entangled Faces Induced by Metal–Acetylene Interactions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yuya Domoto
- Department of Applied ChemistrySchool of EngineeringThe University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Masahiro Abe
- Department of Applied ChemistrySchool of EngineeringThe University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Takashi Kikuchi
- Rigaku Corporation 3-9-12 Matsubaracho, Akishima Tokyo 196-8666 Japan
| | - Makoto Fujita
- Department of Applied ChemistrySchool of EngineeringThe University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|