1
|
Baroliya PK, Dhaker M, Panja S, Al-Thabaiti SA, Albukhari SM, Alsulami QA, Dutta A, Maiti D. Transition Metal-Catalyzed C-H Functionalization Through Electrocatalysis. CHEMSUSCHEM 2023:e202202201. [PMID: 36881013 DOI: 10.1002/cssc.202202201] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Electrochemically promoted transition metal-catalyzed C-H functionalization has emerged as a promising area of research over the last few decades. However, development in this field is still at an early stage compared to traditional functionalization reactions using chemical-based oxidizing agents. Recent reports have shown increased attention on electrochemically promoted metal-catalyzed C-H functionalization. From the standpoint of sustainability, environmental friendliness, and cost effectiveness, electrochemically promoted oxidation of a metal catalyst offers a mild, efficient, and atom-economical alternative to traditional chemical oxidants. This Review discusses advances in the field of transition metal-electrocatalyzed C-H functionalization over the past decade and describes how the unique features of electricity enable metal-catalyzed C-H functionalization in an economic and sustainable way.
Collapse
Affiliation(s)
- Prabhat Kumar Baroliya
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, 313001, India
| | - Mukesh Dhaker
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, 313001, India
| | - Subir Panja
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| | - Shaeel Ahmed Al-Thabaiti
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Soha M Albukhari
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Qana A Alsulami
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Arnab Dutta
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| |
Collapse
|
2
|
Baguia H, Evano G. Direct Perfluoroalkylation of C−H Bonds in (Hetero)arenes. Chemistry 2022; 28:e202200975. [DOI: 10.1002/chem.202200975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Hajar Baguia
- Laboratoire de Chimie Organique Service de Chimie et Physico-Chimie Organiques Université libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique Service de Chimie et Physico-Chimie Organiques Université libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| |
Collapse
|
3
|
Baguia H, Evano G. Copper-Catalyzed Direct Perfluoroalkylation of Heteroarenes. Chemistry 2021; 28:e202103599. [PMID: 34842313 DOI: 10.1002/chem.202103599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Indexed: 02/04/2023]
Abstract
An efficient and broadly applicable process is reported for the copper-catalyzed direct perfluoroalkylation of C-H bonds in heteroarenes with commercially available perfluoroalkyl iodides. This reaction is based on a simple combination of copper(I) iodide and 1,10-phenanthroline enabling the easy reduction of perfluoroalkyl iodides to the corresponding radical species that add to a wide range of heteroarenes including benzofurans, benzothiophenes, (aza)indoles, furans and pyrroles. High levels of regioselectivity were obtained in all cases and the efficiency and robustness of this process was highlighted by the direct perfluoroalkylation of furan-containing peptides.
Collapse
Affiliation(s)
- Hajar Baguia
- Laboratoire de Chimie Organique Service de Chimie et Physic Chimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06 1050, Brussels, Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique Service de Chimie et Physic Chimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06 1050, Brussels, Belgium
| |
Collapse
|
4
|
Liu S, Shi Y, Xue C, Zhang L, Zhou L, Song M. Maleimides in Directing‐Group‐Controlled Transition‐Metal‐Catalyzed Selective C−H Alkylation. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shuang‐Liang Liu
- College of Material and Chemical Engineering and Key Laboratory of Surface and Interface Science and Technology of Henan Province Zhengzhou University of Light Industry Kexue avenue 100 Zhengzhou 450001 P.R. China
| | - Yajun Shi
- College of Material and Chemical Engineering and Key Laboratory of Surface and Interface Science and Technology of Henan Province Zhengzhou University of Light Industry Kexue avenue 100 Zhengzhou 450001 P.R. China
| | - Cong Xue
- College of Material and Chemical Engineering and Key Laboratory of Surface and Interface Science and Technology of Henan Province Zhengzhou University of Light Industry Kexue avenue 100 Zhengzhou 450001 P.R. China
| | - Liming Zhang
- College of Material and Chemical Engineering and Key Laboratory of Surface and Interface Science and Technology of Henan Province Zhengzhou University of Light Industry Kexue avenue 100 Zhengzhou 450001 P.R. China
| | - Liming Zhou
- College of Material and Chemical Engineering and Key Laboratory of Surface and Interface Science and Technology of Henan Province Zhengzhou University of Light Industry Kexue avenue 100 Zhengzhou 450001 P.R. China
| | - Mao‐Ping Song
- College of Chemistry, and Green Catalysis Center Zhengzhou University Kexue avenue 136 Zhengzhou 450001 P.R. China
| |
Collapse
|
5
|
Jacob C, Maes BUW, Evano G. Transient Directing Groups in Metal-Organic Cooperative Catalysis. Chemistry 2021; 27:13899-13952. [PMID: 34286873 DOI: 10.1002/chem.202101598] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Indexed: 12/13/2022]
Abstract
The direct functionalization of C-H bonds is among the most fundamental chemical transformations in organic synthesis. However, when the innate reactivity of the substrate cannot be utilized for the functionalization of a given single C-H bond, this selective C-H bond functionalization mostly relies on the use of directing groups that allow bringing the catalyst in close proximity to the C-H bond to be activated and these directing groups need to be installed before and cleaved after the transformation, which involves two additional undesired synthetic operations. These additional steps dramatically reduce the overall impact and the attractiveness of C-H bond functionalization techniques since classical approaches based on substrate pre-functionalization are sometimes still more straightforward and appealing. During the past decade, a different approach involving both the in situ installation and removal of the directing group, which can then often be used in a catalytic manner, has emerged: the transient directing group strategy. In addition to its innovative character, this strategy has brought C-H bond functionalization to an unprecedented level of usefulness and has enabled the development of remarkably efficient processes for the direct and selective introduction of functional groups onto both aromatic and aliphatic substrates. The processes unlocked by the development of these transient directing groups will be comprehensively overviewed in this review article.
Collapse
Affiliation(s)
- Clément Jacob
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie Organiques, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, CP160/06, 1050, Brussels, Belgium.,Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Bert U W Maes
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie Organiques, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, CP160/06, 1050, Brussels, Belgium
| |
Collapse
|
6
|
Nishimura T. Iridium-Catalyzed Hydroarylation via C-H Bond Activation. CHEM REC 2021; 21:3532-3545. [PMID: 34101981 DOI: 10.1002/tcr.202100109] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/15/2021] [Indexed: 01/02/2023]
Abstract
Hydroarylation reactions via C-H activation, which compensate for shortcomings of classical methods based on the Friedel-Crafts reaction, is one of the most attractive methods to synthesize substituted arenes. This Personal Account reviews our recent studies on iridium-catalyzed intermolecular hydroarylation of vinyl ethers, alkynes, bicycloalkenes, and 1,3-dienes, and intramolecular hydroarylation of m-allyloxyphenyl ketones, where asymmetric addition reactions are included. A cationic iridium catalyst, which is generated from chloroiridium [IrCl] and NaBArF 4 [ArF =3,5-(CF3 )2 C6 H3 ], or a hydroxoiridium [Ir(OH)] complex is effective in catalyzing the hydroarylation depending on the substrates. 1,5-Cyclooctadiene (cod), chiral dienes, and conventional bisphosphines function as ligands controlling the high reactivity and selectivity of the catalysts in the hydroarylation. H/D exchange reaction of alkenes by use of a key intermediate of the hydroarylation reaction is also described.
Collapse
Affiliation(s)
- Takahiro Nishimura
- Department of Chemistry, Graduate School of Science, Osaka City University, Sumiyoshi, Osaka, 558-8585, Japan
| |
Collapse
|
7
|
Dalton T, Greßies S, Das M, Niehues M, Schrader ML, Gutheil C, Ravoo BJ, Glorius F. Silber‐katalysierte Hydroarylierung von hochsubstituierten Styrolen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Toryn Dalton
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Steffen Greßies
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Mowpriya Das
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Maximilian Niehues
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Malte L. Schrader
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Christian Gutheil
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Bart Jan Ravoo
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Frank Glorius
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|
8
|
Dalton T, Greßies S, Das M, Niehues M, Schrader ML, Gutheil C, Ravoo BJ, Glorius F. Silver-Catalysed Hydroarylation of Highly Substituted Styrenes. Angew Chem Int Ed Engl 2021; 60:8537-8541. [PMID: 33493358 DOI: 10.1002/anie.202016268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/21/2021] [Indexed: 12/16/2022]
Abstract
Hydroarylation is an effective strategy to rapidly increase the complexity of organic structures by transforming flat alkene moieties into three-dimensional frameworks. Many strategies have already been developed to achieve the hydroarylation of styrenes, however most of these reports examine the hydroarylation of unpolar, β-mono- or β-unsubstituted styrenes, while exploring mainly electron-rich benzene nucleophiles. Herein, we report a mild and general catalytic system for the selective hydroheteroarylation of multiply substituted styrenes and heteroaromatic styrenes. Mechanistic analysis of the reaction led to the discovery of commercially available 2,2':5',2''-terthiophene as a key reagent.
Collapse
Affiliation(s)
- Toryn Dalton
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Steffen Greßies
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Mowpriya Das
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Maximilian Niehues
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Malte L Schrader
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Christian Gutheil
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Bart Jan Ravoo
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| |
Collapse
|
9
|
Ni S, Hribersek M, Baddigam SK, Ingner FJL, Orthaber A, Gates PJ, Pilarski LT. Mechanochemical Solvent-Free Catalytic C-H Methylation. Angew Chem Int Ed Engl 2021; 60:6660-6666. [PMID: 33031646 PMCID: PMC7986365 DOI: 10.1002/anie.202010202] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Indexed: 12/29/2022]
Abstract
The mechanochemical, solvent-free, highly regioselective, rhodium-catalyzed C-H methylation of (hetero)arenes is reported. The reaction shows excellent functional-group compatibility and is demonstrated to work for the late-stage C-H methylation of biologically active compounds. The method requires no external heating and benefits from considerably shorter reaction times than previous solution-based C-H methylation protocols. Additionally, the mechanochemical approach is shown to enable the efficient synthesis of organometallic complexes that are difficult to generate conventionally.
Collapse
Affiliation(s)
- Shengjun Ni
- Department of Chemistry—BMCUppsala UniversityBox 57675123UppsalaSweden
| | - Matic Hribersek
- Department of Chemistry—BMCUppsala UniversityBox 57675123UppsalaSweden
| | | | | | - Andreas Orthaber
- Department of Chemistry—Ångström LaboratoriesUppsala UniversityBox 52375120UppsalaSweden
| | - Paul J. Gates
- School of ChemistryUniversity of BristolCantock's Close, CliftonBristolBS8 1TSUK
| | | |
Collapse
|
10
|
Teng S, Chi YR, Zhou JS. Enantioselective Three-Component Coupling of Heteroarenes, Cycloalkenes and Propargylic Acetates. Angew Chem Int Ed Engl 2021; 60:4491-4495. [PMID: 33259131 DOI: 10.1002/anie.202014781] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Indexed: 12/17/2022]
Abstract
Asymmetric coupling proceeds efficiently between propargylic acetates, cycloalkenes and electron-rich heteroarenes including indoles, pyrroles, activated furans and thiophenes. 2,3-Disubstituted tetrahydrofurans and pyrrolidines are produced in trans configuration and excellent enantiomeric ratios. The reaction proceeds via Wacker-type attack of nucleophilic heteroarenes on alkenes activated by allenyl PdII species.
Collapse
Affiliation(s)
- Shenghan Teng
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Yonggui Robin Chi
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F-312, 2199 Lishui Road, Nanshan District, Shenzhen, 518055, China
| |
Collapse
|
11
|
Teng S, Chi YR, Zhou JS. Enantioselective Three‐Component Coupling of Heteroarenes, Cycloalkenes and Propargylic Acetates. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Shenghan Teng
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Yonggui Robin Chi
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School, Room F-312 2199 Lishui Road, Nanshan District Shenzhen 518055 China
| |
Collapse
|
12
|
Ni S, Hribersek M, Baddigam SK, Ingner FJL, Orthaber A, Gates PJ, Pilarski LT. Mechanochemical Solvent‐Free Catalytic C−H Methylation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010202] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Shengjun Ni
- Department of Chemistry—BMC Uppsala University Box 576 75123 Uppsala Sweden
| | - Matic Hribersek
- Department of Chemistry—BMC Uppsala University Box 576 75123 Uppsala Sweden
| | - Swarna K. Baddigam
- Department of Chemistry—BMC Uppsala University Box 576 75123 Uppsala Sweden
| | | | - Andreas Orthaber
- Department of Chemistry—Ångström Laboratories Uppsala University Box 523 75120 Uppsala Sweden
| | - Paul J. Gates
- School of Chemistry University of Bristol Cantock's Close, Clifton Bristol BS8 1TS UK
| | - Lukasz T. Pilarski
- Department of Chemistry—BMC Uppsala University Box 576 75123 Uppsala Sweden
| |
Collapse
|
13
|
Kim YL, Park SA, Kim JH. Cobalt-Catalyzed Direct C(sp2
)-H Alkylation with Unactivated Alkenes. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000565] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ye Lim Kim
- Department of Chemistry (BK21 Plus).; Institution Research Institute of Natural Science; Gyeongsang National University; 52828 Jinju Korea
| | - Sun-a Park
- Department of Chemistry (BK21 Plus).; Institution Research Institute of Natural Science; Gyeongsang National University; 52828 Jinju Korea
| | - Ju Hyun Kim
- Department of Chemistry (BK21 Plus).; Institution Research Institute of Natural Science; Gyeongsang National University; 52828 Jinju Korea
| |
Collapse
|
14
|
Wu S, Dong J, Zhou D, Wang W, Liu L, Zhou Y. Phosphorous Acid-Catalyzed Alkylation of Phenols with Alkenes. J Org Chem 2020; 85:14307-14314. [PMID: 31875676 DOI: 10.1021/acs.joc.9b03028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A H3PO3-catalyzed alkylation of phenols with alkenes is achieved in a facile, efficient, and selective manner. The reaction shows a unique selectivity, i.e., excellent regioselectivity, thorough suppression of overalkylation, without alkylation of a simple phenyl ring, and can selectively provide ortho-, meta-, or para-alkylated phenol derivatives in good to excellent yields. This feature along with mild reaction conditions, sensitive functional group tolerance, and scale-up synthesis and late modification of phenolic bioactive compounds make it an ideal and practical alternative for the modification of phenols.
Collapse
Affiliation(s)
- Shaofeng Wu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jianyu Dong
- Department of Educational Science, Hunan First Normal University, Changsha 410205, China
| | - Dan Zhou
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Wan Wang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Long Liu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.,Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Yongbo Zhou
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
15
|
Tian M, Liu S, Bu X, Yu J, Yang X. Covalent Organic Frameworks: A Sustainable Photocatalyst toward Visible-Light-Accelerated C3 Arylation and Alkylation of Quinoxalin-2(1H)-ones. Chemistry 2019; 26:369-373. [PMID: 31595996 DOI: 10.1002/chem.201903523] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Indexed: 12/20/2022]
Abstract
A practical and scalable protocol for visible-light-accelerated arylation and alkylation of quinoxalin-2(1H)-ones with hydrazines is reported. In this protocol, a hydrazone-based two-dimensional covalent organic frameworks (2D-COF-1) was employed as the heterogeneous photocatalyst (PC). Due to its excellent photocatalytic properties, good chemical stability and heterogeneous nature, the present method exhibits high efficiency, good functional group tolerance, easy scalability and remarkable catalyst reusability. More importantly, it provides an alternative way that allows rapid access to various C3 arylated or alkylated quinoxalin-2(1H)-ones in a greener and sustainable manner.
Collapse
Affiliation(s)
- Miao Tian
- Institute of Catalysis for Energy and Environment, College of, Chemistry & Chemical Engineering, Shenyang Normal University, Shenyang, Liaoning, 110034, P. R. China
| | - Shuyang Liu
- Institute of Catalysis for Energy and Environment, College of, Chemistry & Chemical Engineering, Shenyang Normal University, Shenyang, Liaoning, 110034, P. R. China
| | - Xiubin Bu
- Institute of Catalysis for Energy and Environment, College of, Chemistry & Chemical Engineering, Shenyang Normal University, Shenyang, Liaoning, 110034, P. R. China
| | - Jipan Yu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaobo Yang
- Institute of Catalysis for Energy and Environment, College of, Chemistry & Chemical Engineering, Shenyang Normal University, Shenyang, Liaoning, 110034, P. R. China
| |
Collapse
|