1
|
Li Y, Qu X, Wang Q, Li S, Zhang Q, Zhang X. Tannic acid and carboxymethyl chitosan-based multi-functional double-layered hydrogel with pH-stimulated response behavior for smart real-time infection monitoring and wound treatment. Int J Biol Macromol 2024; 261:129042. [PMID: 38161021 DOI: 10.1016/j.ijbiomac.2023.129042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
The dramatic increase of drug-resistant pathogenic bacteria has seriously effect on human health, appealing the needs of developing theranostic platforms with stimuli-responsive materials to realize the accurate bacterial diagnostics and therapeutics. Herein, a tannic acid and carboxymethyl chitosan-based multifunctional ZIF-90@i-PPOPs-phenol red double-layered hydrogel with stimuli-responsiveness and antibacterial activity was fabricated. The inner layer hydrogel (ZIF-90@i-PPOPs-based TFC hydrogels) was fabricated based on ZIF-90@i-PPOPs, integrate tannic acid and carboxymethyl chitosan linked by formylphenylboronic acid (FPBA), which exhibited outstanding injectable, biodegradability and antibacterial activity. The outer layer hydrogel (PR@PAM hydrogels) were constructed from polyacrylamide (PAM) and pH indicator phenol red, owning porous structure and excellent tissue adhesion. Due to the weakly acidic microenvironment within wound, the inner-layer hydrogel was stimulus-responsively decomposed, resulting in the accurate delivery of the positively charged ZIF-90@i-PPOPs to the lesion site to capture and kill bacteria by enhanced Zn2+ and ROS release. Meantime, the outer-layer hydrogel could real-timely monitor the pH changes to evaluate the wound recovery status. These double-layered hydrogels possessed precisely pH monitoring capacity, excellent antibacterial ability and negligible side effect to normal tissue in vivo, implying the high potential of the suggested hydrogels as theranostic platform for antibacterial treatment.
Collapse
Affiliation(s)
- Yanhong Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xinyan Qu
- School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Quanbo Wang
- School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Sheng Li
- Weifang Hospital of Traditional Chinese Medicine, Weifang 261000, China
| | - Qiang Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xiaomei Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| |
Collapse
|
2
|
Qindeel M, Sargazi S, Hosseinikhah SM, Rahdar A, Barani M, Thakur VK, Pandey S, Mirsafaei R. Porphyrin‐Based Nanostructures for Cancer Theranostics: Chemistry, Fundamentals and Recent Advances. ChemistrySelect 2021. [DOI: 10.1002/slct.202103418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Maimoona Qindeel
- Hamdard Institute of Pharmaceutical Sciences Hamdard University Islamabad Campus Islamabad Pakistan
- Department of Pharmacy Quaid-i-Azam University Islamabad Pakistan
| | - Saman Sargazi
- Cellular and Molecular Research Center Research Institute of Cellular and Molecular Sciences in Infectious Diseases Zahedan University of Medical Sciences Zahedan 9816743463 Iran
| | - Seyedeh Maryam Hosseinikhah
- Nanotechnology Research Center Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
| | - Abbas Rahdar
- Department of Physics Faculty of Science University of Zabol Zabol Iran
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center Kerman University of Medical Sciences Kerman 7616913555 Iran
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre Scotland's Rural College Scotland Edinburgh EH9 3JG United Kingdom
- School of Engineering University of Petroleum & Energy Studies (UPES) Dehradun 248007 Uttarakhand India
| | - Sadanand Pandey
- Particulate Matter Research Center Research Institute of Industrial Science & Technology (RIST) 187-12, Geumho-ro Gwangyang-si Jeollanam-do 57801, Republic of Korea
| | - Razieh Mirsafaei
- Novel Drug Delivery Systems Research Centre and Department of Pharmaceutics School of Pharmacy Isfahan University of Medical Sciences Isfahan Iran
| |
Collapse
|
3
|
Jou AF, Chou Y, Willner I, Ho JA. Imaging of Cancer Cells and Dictated Cytotoxicity Using Aptamer‐Guided Hybridization Chain Reaction (HCR)‐Generated G‐Quadruplex Chains. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Amily Fang‐Ju Jou
- Bioanalytical Chemistry and Nanobiomedicine Laboratory Department of Biochemical Science and Technology National Taiwan University No. 1, Sec. 4, Roosevelt Road Taipei 10617 Taiwan
- Department of Chemistry Chung Yuan Christian University No. 200, Chung Pei Road Taoyuan City 320314 Taiwan
| | - Yi‐Te Chou
- Bioanalytical Chemistry and Nanobiomedicine Laboratory Department of Biochemical Science and Technology National Taiwan University No. 1, Sec. 4, Roosevelt Road Taipei 10617 Taiwan
| | - Itamar Willner
- Institute of Chemistry Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Ja‐an Annie Ho
- Bioanalytical Chemistry and Nanobiomedicine Laboratory Department of Biochemical Science and Technology National Taiwan University No. 1, Sec. 4, Roosevelt Road Taipei 10617 Taiwan
- Department of Chemistry National (Taiwan) University No. 1, Sec. 4, Roosevelt Road Taipei 10617 Taiwan
- Center for Emerging Materials and Advance Devices National (Taiwan) University No. 1, Sec. 4, Roosevelt Road Taipei 10617 Taiwan
- Center for Biotechnology National (Taiwan) University No. 1, Sec. 4, Roosevelt Road Taipei 10617 Taiwan
| |
Collapse
|
4
|
Jou AFJ, Chou YT, Willner I, Ho JAA. Imaging of Cancer Cells and Dictated Cytotoxicity Using Aptamer-Guided Hybridization Chain Reaction (HCR)-Generated G-Quadruplex Chains. Angew Chem Int Ed Engl 2021; 60:21673-21678. [PMID: 34350685 DOI: 10.1002/anie.202106147] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/14/2021] [Indexed: 01/07/2023]
Abstract
DNA nanotechnology provides powerful tools for developing cancer theranostics. Here we introduce the autonomous surface-nucleolin-guided HCR that leads to the polymerization of G-quadruplex polymer chains, in which the ZnII -protoporphyrin IX is intercalated. We demonstrate that MDA-MB-231 (Triple Negative Breast Cancer cells, TNBC) with overexpressed surface nucleolin were able to induce HCR leading to the formation of the ZnII PPIX-loaded G-quadruplex polymer chains, while the M10 epithelial breast cells served as control. The ZnII PPIX-loaded nanowires allow the selective imaging of TNBC, and their permeation into the TNBC leads to selective cytotoxicity and guided photodynamic therapy toward the cancer cells due to structural perturbation of the membranes. The aptamer-guided HCR-generated G-quadruplex polymer chains may serve as a versatile tool to target TNBC featuring poor prognosis and high pathological risk of recurrence, thus offering a promising theranostic platform.
Collapse
Affiliation(s)
- Amily Fang-Ju Jou
- Bioanalytical Chemistry and Nanobiomedicine Laboratory Department of Biochemical Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan.,Department of Chemistry, Chung Yuan Christian University, No. 200, Chung Pei Road, Taoyuan City, 320314, Taiwan
| | - Yi-Te Chou
- Bioanalytical Chemistry and Nanobiomedicine Laboratory Department of Biochemical Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Itamar Willner
- Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Ja-An Annie Ho
- Bioanalytical Chemistry and Nanobiomedicine Laboratory Department of Biochemical Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan.,Department of Chemistry, National (Taiwan) University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan.,Center for Emerging Materials and Advance Devices, National (Taiwan) University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan.,Center for Biotechnology, National (Taiwan) University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| |
Collapse
|
5
|
Jiang M, Wu J, Liu W, Ren H, Zhang W, Lee CS, Wang P. Self-assembly of Amphiphilic Porphyrins To Construct Nanoparticles for Highly Efficient Photodynamic Therapy. Chemistry 2021; 27:11195-11204. [PMID: 33960049 DOI: 10.1002/chem.202101199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Indexed: 11/08/2022]
Abstract
Hydrophobic photosensitizers greatly affect cell permeability and enrichment in tumors, but they cannot be used directly for clinical applications because they always aggregate in water, preventing their circulation in the blood and accumulation in tumor cells. As a result, amphiphilic photosensitizers are highly desirable. Although nanomaterial-based photosensitizers can solve water solubility, they have the disadvantages of complicated operation, poor reproducibility, low drug loading, and poor stability. In this work, an efficient synthesis strategy is proposed that converts small molecules into nanoparticles in 100 % aqueous solution by molecular assembly without the addition of any foreign species. Three photosensitizers with triphenylphosphine units and ethylene glycol chains of different lengths, TPP-PPh3 , TPP-PPh3 -2PEG and TPP-PPh3 -4PEG, were synthesized to improve amphiphilicity. Of the three photosensitizers, TPP-PPh3 -4PEG is the most efficient (singlet oxygen yield: 0.89) for tumor photodynamic therapy not only because of its definite constituent, but also because its amphiphilic structure allows it to self-assemble in water.
Collapse
Affiliation(s)
- Meiyu Jiang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiasheng Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Haohui Ren
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wenjun Zhang
- Center of Super-Diamond and Advanced Films (COSDAF) and CityU-CAS Joint Laboratory of Functional Materials and Devices, City University of Hong Kong Kowloon, Hong Kong SAR, China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) and CityU-CAS Joint Laboratory of Functional Materials and Devices, City University of Hong Kong Kowloon, Hong Kong SAR, China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
6
|
Sun B, Chang R, Cao S, Yuan C, Zhao L, Yang H, Li J, Yan X, van Hest JCM. Acid-Activatable Transmorphic Peptide-Based Nanomaterials for Photodynamic Therapy. Angew Chem Int Ed Engl 2020; 59:20582-20588. [PMID: 32687653 PMCID: PMC7693186 DOI: 10.1002/anie.202008708] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/19/2020] [Indexed: 01/23/2023]
Abstract
Inspired by the dynamic morphology control of molecular assemblies in biological systems, we have developed pH-responsive transformable peptide-based nanoparticles for photodynamic therapy (PDT) with prolonged tumor retention times. The self-assembled peptide-porphyrin nanoparticles transformed into nanofibers when exposed to the acidic tumor microenvironment, which was mainly driven by enhanced intermolecular hydrogen bond formation between the protonated molecules. The nanoparticle transformation into fibrils improved their singlet oxygen generation ability and enabled high accumulation and long-term retention at tumor sites. Strong fluorescent signals of these nanomaterials were detected in tumor tissue up to 7 days after administration. Moreover, the peptide assemblies exhibited excellent anti-tumor efficacy via PDT in vivo. This in situ fibrillar transformation strategy could be utilized to design effective stimuli-responsive biomaterials for long-term imaging and therapy.
Collapse
Affiliation(s)
- Bingbing Sun
- Bio-Organic ChemistryInstitute of Complex Molecular SystemsDepartment of Biomedical EngineeringEindhoven University of TechnologyP. O. Box 5135600 MBEindhovenThe Netherlands
| | - Rui Chang
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijing100190China
| | - Shoupeng Cao
- Bio-Organic ChemistryInstitute of Complex Molecular SystemsDepartment of Biomedical EngineeringEindhoven University of TechnologyP. O. Box 5135600 MBEindhovenThe Netherlands
| | - Chengqian Yuan
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijing100190China
| | - Luyang Zhao
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijing100190China
| | - Haowen Yang
- Laboratory of ImmunoengineeringDepartment of Biomedical EngineeringInstitute for Complex Molecular SystemsEindhoven University of Technology5600 MBEindhovenThe Netherlands
| | - Junbai Li
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Colloid, Interface and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of SciencesBeijing100190China
| | - Xuehai Yan
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijing100190China
| | - Jan C. M. van Hest
- Bio-Organic ChemistryInstitute of Complex Molecular SystemsDepartment of Biomedical EngineeringEindhoven University of TechnologyP. O. Box 5135600 MBEindhovenThe Netherlands
| |
Collapse
|
7
|
Sun B, Chang R, Cao S, Yuan C, Zhao L, Yang H, Li J, Yan X, Hest JCM. Acid‐Activatable Transmorphic Peptide‐Based Nanomaterials for Photodynamic Therapy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008708] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Bingbing Sun
- Bio-Organic Chemistry Institute of Complex Molecular Systems Department of Biomedical Engineering Eindhoven University of Technology P. O. Box 513 5600 MB Eindhoven The Netherlands
| | - Rui Chang
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 China
| | - Shoupeng Cao
- Bio-Organic Chemistry Institute of Complex Molecular Systems Department of Biomedical Engineering Eindhoven University of Technology P. O. Box 513 5600 MB Eindhoven The Netherlands
| | - Chengqian Yuan
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 China
| | - Luyang Zhao
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 China
| | - Haowen Yang
- Laboratory of Immunoengineering Department of Biomedical Engineering Institute for Complex Molecular Systems Eindhoven University of Technology 5600 MB Eindhoven The Netherlands
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 China
| | - Jan C. M. Hest
- Bio-Organic Chemistry Institute of Complex Molecular Systems Department of Biomedical Engineering Eindhoven University of Technology P. O. Box 513 5600 MB Eindhoven The Netherlands
| |
Collapse
|
8
|
Zhang Y, Shen W, Zhang P, Chen L, Xiao C. GSH-triggered release of sulfur dioxide gas to regulate redox balance for enhanced photodynamic therapy. Chem Commun (Camb) 2020; 56:5645-5648. [DOI: 10.1039/d0cc00470g] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Herein, a promising strategy is explored to regulate redox balance in tumor cells by simultaneously consuming GSH and releasing SO2 gas for enhanced photodynamic therapy.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Wei Shen
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Peng Zhang
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Li Chen
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|
9
|
Zhong S, Chen C, Yang G, Zhu Y, Cao H, Xu B, Luo Y, Gao Y, Zhang W. Acid-Triggered Nanoexpansion Polymeric Micelles for Enhanced Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:33697-33705. [PMID: 31487149 DOI: 10.1021/acsami.9b12620] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Photodynamic therapy (PDT) as a noninvasive and selective treatment technology has presented great potential in cancer prevention and precision medicine, but its therapeutic efficacy is still greatly inhibited by the limitations of photosensitizers (PSs) in the microenvironment such as the aggregation caused quenching (ACQ) of PSs. Herein, we proposed an "acid-triggered nanoexpansion" method to further reduce the aggregation of photosensitizers by constructing acetal-based polymeric micelles. A pH-responsive amphiphilic block copolymer, POEGMA-b-[PTTMA-co-PTPPC6MA] was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization and self-assembled into spherical micelles. In the normal physiological environment, the micelles were stable and had good biocompatibility. Upon entry into the acidic microenvironment of the tumor, the acid-responsive hydrophobic 2, 4, 6-trimethoxybenzaldehyde in the micelles hydrolyzed and generated a hydrophilic diol moiety. Although the hydrophility of the micellar core was increased, the assembled structure of block copolymers was not dissociated but expanded. The responsive expansion of the micelles could allow the photosensitizers to well-disperse in the core, whereas more tumor-dissolved oxygen entered the micelles. This phenomenon could provide a better nanoenvironment for photosensitizers to reduce the ACQ of the photosensitizers, leading to more singlet oxygen (1O2) produced under the laser irradiation (650 nm). Both in vitro and in vivo studies have demonstrated that the remarkable photodynamic therapeutic efficacy of acid-responsive micelles could be realized. Thus, the acid-triggered nanoexpansion method might provide more possibilities to develop efficient platforms for treating cancers.
Collapse
|
10
|
Zhou K, Tian R, Li G, Qiu X, Xu L, Guo M, Chigan D, Zhang Y, Chen X, He G. Cationic Chalcogenoviologen Derivatives for Photodynamic Antimicrobial Therapy and Skin Regeneration. Chemistry 2019; 25:13472-13478. [DOI: 10.1002/chem.201903278] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Kun Zhou
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Ran Tian
- School of Chemical Engineering and TechnologyShaanxi Key Laboratory of Energy Chemical Process IntensificationInstitute of Polymer Science in Chemical EngineeringXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Guoping Li
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Xinyu Qiu
- Center for Tissue Engineering, School of StomatologyFourth Military Medical University Xi'an Shaanxi Province 710032 China
| | - Letian Xu
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Mengying Guo
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Dongdong Chigan
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Yanfeng Zhang
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Xin Chen
- School of Chemical Engineering and TechnologyShaanxi Key Laboratory of Energy Chemical Process IntensificationInstitute of Polymer Science in Chemical EngineeringXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Gang He
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| |
Collapse
|