1
|
Yuan J, Lu X, Li Q, Lü Z, Lu Q. Reversible Micrometer-Scale Spiral Self-Assembly in Liquid Crystalline Block Copolymer Film with Controllable Chiral Response. Angew Chem Int Ed Engl 2021; 60:12308-12312. [PMID: 33749105 DOI: 10.1002/anie.202101102] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/09/2021] [Indexed: 12/18/2022]
Abstract
The spiral is a fundamental structure in nature and spiral structures with controllable handedness are of increasing interest in the design of new chiroptical materials. In this study, micrometer-scale spiral structures with reversible chirality were fabricated based on the assembly of a liquid crystalline block copolymer film assisted by enantiopure tartaric acid. Mechanistic insight revealed that the formation of the spiral structures was closely related to the liquid crystalline properties of the major phase of block copolymer under the action of chiral tartaric acid. The chiral spiral structures with controllable handedness were easily erased under ultraviolet light irradiation and restored via thermal annealing. This facile thermal treatment method provides guidance for fabrication of chiral micrometer-scale spiral structures with adjustable chiral properties.
Collapse
Affiliation(s)
- Jianan Yuan
- School of Chemical Science and Technology, Tongji University, Siping Road No. 1239, Shanghai, 200092, China
| | - Xuemin Lu
- Shanghai Key Lab of Electrical & Thermal Aging, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Dongchuan Road No. 800, Shanghai, 200240, China
| | - Qingxiang Li
- Shanghai Key Lab of Electrical & Thermal Aging, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Dongchuan Road No. 800, Shanghai, 200240, China
| | - Zhiguo Lü
- School of Physics and Astronomy, Key Laboratory of Artificial Structures and Quantum Control, Shanghai Jiao Tong University, Dongchuan Road No. 800, Shanghai, 200240, China
| | - Qinghua Lu
- School of Chemical Science and Technology, Tongji University, Siping Road No. 1239, Shanghai, 200092, China.,Shanghai Key Lab of Electrical & Thermal Aging, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Dongchuan Road No. 800, Shanghai, 200240, China
| |
Collapse
|
2
|
Yuan J, Lu X, Li Q, Lü Z, Lu Q. Reversible Micrometer‐Scale Spiral Self‐Assembly in Liquid Crystalline Block Copolymer Film with Controllable Chiral Response. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jianan Yuan
- School of Chemical Science and Technology Tongji University Siping Road No. 1239 Shanghai 200092 China
| | - Xuemin Lu
- Shanghai Key Lab of Electrical & Thermal Aging School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Dongchuan Road No. 800 Shanghai 200240 China
| | - Qingxiang Li
- Shanghai Key Lab of Electrical & Thermal Aging School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Dongchuan Road No. 800 Shanghai 200240 China
| | - Zhiguo Lü
- School of Physics and Astronomy Key Laboratory of Artificial Structures and Quantum Control Shanghai Jiao Tong University Dongchuan Road No. 800 Shanghai 200240 China
| | - Qinghua Lu
- School of Chemical Science and Technology Tongji University Siping Road No. 1239 Shanghai 200092 China
- Shanghai Key Lab of Electrical & Thermal Aging School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Dongchuan Road No. 800 Shanghai 200240 China
| |
Collapse
|
3
|
Zha X, Chen Y, Fan H, Yang Y, Xiong Y, Xu G, Yan K, Wang Y, Xie Y, Wang D. Handedness Inversion of Chiral 3-Aminophenol Formaldehyde Resin Nanotubes Mediated by Metal Coordination. Angew Chem Int Ed Engl 2021; 60:7759-7769. [PMID: 33368984 DOI: 10.1002/anie.202013790] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Indexed: 12/31/2022]
Abstract
Precise adjustment of microstructure and handedness of chiral nanomaterials is important to regulate their properties and performance. Herein, helical 3-aminophenol formaldehyde resin (APF) nanotubes and corresponding carbonaceous nanotubes with controllable handedness and optical activity were obtained via an external metal ion-mediated supramolecular co-templating method in an enantiomerically pure template system, in which an appropriate amount of Mn2+ (Co2+ or Ni2+ ) with moderate coordination abilities can reverse the spatial arrangement of the phenylglycine-based amphiphilic template molecules through metal coordination. Different stacking modes of coordination complexes in disparate metal ion systems lead to diverse helical senses (diameter and pitch) of the obtained helical APF. In addition, this coordination mode of metal intervention can be applied to other amine-based helical polymer synthesis systems, which paves the way for the design of high-quality chiral nanomaterials with satisfactory physical parameters and properties.
Collapse
Affiliation(s)
- Xinlin Zha
- Hubei Key Laboratory of Advanced Textile Materials & Application, Wuhan Textile University, Yangguang Road 1, Wuhan, 430200, P. R. China
| | - Yuanli Chen
- Hubei Key Laboratory of Advanced Textile Materials & Application, Wuhan Textile University, Yangguang Road 1, Wuhan, 430200, P. R. China
| | - Hui Fan
- Hubei Key Laboratory of Advanced Textile Materials & Application, Wuhan Textile University, Yangguang Road 1, Wuhan, 430200, P. R. China
| | - Yonggang Yang
- College of Chemistry and Chemical Engineering, Suzhou University, Suzhou, 215123, P. R. China
| | - Yi Xiong
- Hubei Key Laboratory of Advanced Textile Materials & Application, Wuhan Textile University, Yangguang Road 1, Wuhan, 430200, P. R. China
| | - Guilin Xu
- Hubei Key Laboratory of Advanced Textile Materials & Application, Wuhan Textile University, Yangguang Road 1, Wuhan, 430200, P. R. China
| | - Kun Yan
- Hubei Key Laboratory of Advanced Textile Materials & Application, Wuhan Textile University, Yangguang Road 1, Wuhan, 430200, P. R. China
| | - Yuedan Wang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Wuhan Textile University, Yangguang Road 1, Wuhan, 430200, P. R. China
| | - Yi Xie
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Dong Wang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Wuhan Textile University, Yangguang Road 1, Wuhan, 430200, P. R. China
| |
Collapse
|
4
|
Zha X, Chen Y, Fan H, Yang Y, Xiong Y, Xu G, Yan K, Wang Y, Xie Y, Wang D. Handedness Inversion of Chiral 3‐Aminophenol Formaldehyde Resin Nanotubes Mediated by Metal Coordination. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xinlin Zha
- Hubei Key Laboratory of Advanced Textile Materials & Application Wuhan Textile University Yangguang Road 1 Wuhan 430200 P. R. China
| | - Yuanli Chen
- Hubei Key Laboratory of Advanced Textile Materials & Application Wuhan Textile University Yangguang Road 1 Wuhan 430200 P. R. China
| | - Hui Fan
- Hubei Key Laboratory of Advanced Textile Materials & Application Wuhan Textile University Yangguang Road 1 Wuhan 430200 P. R. China
| | - Yonggang Yang
- College of Chemistry and Chemical Engineering Suzhou University Suzhou 215123 P. R. China
| | - Yi Xiong
- Hubei Key Laboratory of Advanced Textile Materials & Application Wuhan Textile University Yangguang Road 1 Wuhan 430200 P. R. China
| | - Guilin Xu
- Hubei Key Laboratory of Advanced Textile Materials & Application Wuhan Textile University Yangguang Road 1 Wuhan 430200 P. R. China
| | - Kun Yan
- Hubei Key Laboratory of Advanced Textile Materials & Application Wuhan Textile University Yangguang Road 1 Wuhan 430200 P. R. China
| | - Yuedan Wang
- Hubei Key Laboratory of Advanced Textile Materials & Application Wuhan Textile University Yangguang Road 1 Wuhan 430200 P. R. China
| | - Yi Xie
- Hefei National Laboratory for Physical Sciences at the Microscale Collaborative Innovation Center of Chemistry for Energy Materials University of Science and Technology of China Hefei 230026 P. R. China
| | - Dong Wang
- Hubei Key Laboratory of Advanced Textile Materials & Application Wuhan Textile University Yangguang Road 1 Wuhan 430200 P. R. China
| |
Collapse
|