Fischer NH, Fumi E, Oliveira MT, Thulstrup PW, Diness F. Tuning peptide structure and function through fluorobenzene stapling.
Chemistry 2021;
28:e202103788. [PMID:
34897848 DOI:
10.1002/chem.202103788]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Indexed: 11/09/2022]
Abstract
Cyclic peptides are promising next-generation therapeutics with improved biological stability and activity. A catalyst-free stapling method for cysteine-containing peptides was developed. This enables fine-tuning of the macrocycle by using the appropriate regioisomers of fluorobenzene linkers. Stapling was performed on the unprotected linear peptide or, more conveniently, directly on-resin after peptide synthesis. NMR spectroscopy and circular dichroism studies demonstrate that the type of stapling can tune the secondary structures of the peptides. The method was applied to a set of potential agonists for melanocortin receptors, generating a library of macrocyclic potent ligands with ortho , meta or para relationships between the thioethers. Their small but significant difference in potency and efficacy demonstrates how the method allows facile fine-tuning of macrocyclic peptides towards biological targets from the same linear precursor.
Collapse