1
|
Moneuse R, Bourgeois D, Le Goff X, Lehn JM, Meyer D. Behavior of a Dynamic Covalent Library Driven by Combined Pd(II) and Biphasic Effectors for Metal Transport between Phases. Chemistry 2023; 29:e202302188. [PMID: 37566451 DOI: 10.1002/chem.202302188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
This work reports the effect of Pd(II) as chemical effector on an acylhydrazone-based dynamic covalent library (DCL) in biphasic systems (water/chloroform). The constituents of the DCL are self-built and distributed in the two phases, two of them are lipophilic enough to play the role of a carrier agent that may transfer Pd(II) from the aqueous phase to the organic phase. Upon addition of Pd(II), the DCL of components exhibits a strong amplification of the constituent that is the most adapted to stabilize Pd(II) in chloroform as well as its agonist in water. This evolution is driven by the combination of the interaction of the DCL with Pd(II) and the presence of the two phases. This study paves the way to a novel approach for liquid/liquid extraction and metal recovery by means of adaptive extractant species generated in situ by a DCL.
Collapse
Affiliation(s)
- Raphaël Moneuse
- Institut de Chimie Séparative de Marcoule (ICSM) UMR 5257, Université de Montpellier, CEA, CNRS, ENSCM, Site de Marcoule, Bâtiment 426, BP 17171, 30207, Bagnols-sur-Cèze, France
| | - Damien Bourgeois
- Institut de Chimie Séparative de Marcoule (ICSM) UMR 5257, Université de Montpellier, CEA, CNRS, ENSCM, Site de Marcoule, Bâtiment 426, BP 17171, 30207, Bagnols-sur-Cèze, France
| | - Xavier Le Goff
- Institut de Chimie Séparative de Marcoule (ICSM) UMR 5257, Université de Montpellier, CEA, CNRS, ENSCM, Site de Marcoule, Bâtiment 426, BP 17171, 30207, Bagnols-sur-Cèze, France
| | - Jean-Marie Lehn
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), UMR 7006, 8 Allée Gaspard Monge, BP 70028, 67083, Strasbourg, France
| | - Daniel Meyer
- Institut de Chimie Séparative de Marcoule (ICSM) UMR 5257, Université de Montpellier, CEA, CNRS, ENSCM, Site de Marcoule, Bâtiment 426, BP 17171, 30207, Bagnols-sur-Cèze, France
| |
Collapse
|
2
|
Li G, Zhang X, Yang S, Li T, Wang Y, Chen M, Dong W. Fabricating a Repairable, Recyclable, Imine-based Dynamic Covalent Thermosetting Resin with Excellent Water Resistance by Introducing Dynamic Covalent Oxime Bonds. CHEMSUSCHEM 2021; 14:4340-4348. [PMID: 34467655 DOI: 10.1002/cssc.202101408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/26/2021] [Indexed: 06/13/2023]
Abstract
The sustainable production of adaptive, recyclable and imine-based dynamic covalent thermosetting resins (DCTRs) presents an opportunity for polymer scientists to address the prevalent environmental and energy concerns associated with current petroleum-based plastics. However, the imine-based DCTRs easily decompose in the presence of water, which can weaken the mechanical properties in imine-based polymers. In this study, we designed oxime-imine DCTRs that are stable in the presence of water and exhibit good mechanical properties. In the presence of one kind of amino group catalyst, the oxime-imine DCTRs could be completely recycled. Additionally, these well-designed oxime-imine DCTRs have good mechanical properties, high glass transition temperatures (166 °C), and good thermal stabilities. Taken together, this work offers a sustainable solution for the design and manufacture of high-value degradable materials intended for applications in which recyclability and reusability are indispensable.
Collapse
Affiliation(s)
- Guanglong Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, P. R. China
| | - Xuhui Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, P. R. China
| | - Shuobing Yang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, P. R. China
| | - Ting Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, P. R. China
| | - Yang Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, P. R. China
| | - Mingqing Chen
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, P. R. China
| | - Weifu Dong
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, P. R. China
| |
Collapse
|
3
|
Chen Y, Lei Y, Tong L, Li H. Stabilization of Dynamic Covalent Architectures by Multivalence. Chemistry 2021; 28:e202102910. [PMID: 34591343 DOI: 10.1002/chem.202102910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Indexed: 01/09/2023]
Abstract
The formation of imine bond is reversible. This feature has been taken advantage of by chemists for accomplishing high yielding self-assembly. On the other hand, it also jeopardizes the intrinsic stability of these self-assembled products. However, some recent discoveries demonstrate that some of these imine bond containing molecules could be rather stable or kinetically inert. A deep investigation indicated that such enhanced stability results from, at least partially, multivalence. Such results also inspire chemists to use imine condensation for self-assembly in water, a solvent that is considered not compatible with imine bond for a long time.
Collapse
Affiliation(s)
- Yixin Chen
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Ye Lei
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Lu Tong
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Hao Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, P. R. China
| |
Collapse
|
4
|
Han GS, Domaille DW. Tuning the exchange dynamics of boronic acid hydrazones and oximes with pH and redox control. Org Biomol Chem 2021; 19:4986-4991. [PMID: 34008683 DOI: 10.1039/d1ob00191d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Dynamic bonds continually form and dissociate at equilibrium. Carbonyl compounds with proximal boronic acids, including 2-formylphenylboronic acid (2-FPBA), have been reported to form highly dynamic covalent hydrazone and oxime bonds in physiological conditions, but strategies to tune the dynamics have not yet been reported. Here, we characterize the dynamics of 2-FPBA-derived hydrazones and oximes and account for both the rapid rate of formation (∼102-103 M-1 s-1) and the relatively fast rate of hydrolysis (∼10-4 s-1) at physiological pH. We further show that these substrates undergo exchange with α-nucleophiles, which can be reversibly paused and restarted with pH control. Finally, we show that oxidation of the arylboronic acid effectively abolishes the rapid dynamics, which slows the forward reaction by more than 30 000 times and increases the hydrolytic half-life from 50 minutes to 6 months at physiological pH. These results set the stage to explore these linkages in dynamic combinatorial libraries, reversible bioconjugation, and self-healing materials.
Collapse
Affiliation(s)
- Gun Su Han
- Department of Chemistry, Colorado School of Mines, Golden, CO, USA.
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, CO, USA.
| |
Collapse
|
5
|
Lei Y, Chen Q, Liu P, Wang L, Wang H, Li B, Lu X, Chen Z, Pan Y, Huang F, Li H. Molecular Cages Self‐Assembled by Imine Condensation in Water. Angew Chem Int Ed Engl 2021; 60:4705-4711. [DOI: 10.1002/anie.202013045] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/16/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Ye Lei
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Qiong Chen
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Peiren Liu
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Lingxiang Wang
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Hongye Wang
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Bingda Li
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Xingyu Lu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province Instrumentation and Service Centre for Molecular Sciences Westlake University Hangzhou 310024 China
| | - Zhong Chen
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province Instrumentation and Service Centre for Molecular Sciences Westlake University Hangzhou 310024 China
| | - Yuanjiang Pan
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Feihe Huang
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Hao Li
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| |
Collapse
|
6
|
Lei Y, Chen Q, Liu P, Wang L, Wang H, Li B, Lu X, Chen Z, Pan Y, Huang F, Li H. Molecular Cages Self‐Assembled by Imine Condensation in Water. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013045] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Ye Lei
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Qiong Chen
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Peiren Liu
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Lingxiang Wang
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Hongye Wang
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Bingda Li
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Xingyu Lu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province Instrumentation and Service Centre for Molecular Sciences Westlake University Hangzhou 310024 China
| | - Zhong Chen
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province Instrumentation and Service Centre for Molecular Sciences Westlake University Hangzhou 310024 China
| | - Yuanjiang Pan
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Feihe Huang
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Hao Li
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| |
Collapse
|
7
|
Si M, Zhu W, Zhang Y, Barboiu M, Chen J. Fluorodynamers Displaying Tunable Fluorescence on Constitutional Exchanges in Solution and at Solid Film-Solution Interface. Chemistry 2020; 26:10191-10194. [PMID: 32220132 DOI: 10.1002/chem.202000981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Indexed: 12/18/2022]
Abstract
Dynamic covalent polymers-dynamers-are adaptive materials that offer timely variant adaptive macroscopic organization across extended scales. In the current study, imine exchange reactions and fluorescence transfer can occur at the interfaces between various solutions and solid state dynameric films. The fluorescence quenching upon imine formations for designed fluorogen was successfully demonstrated, and this tunable fluorescence was further used to study the re-composition of a solid film. Moreover, the dynamic covalent films also exhibited responsiveness to competing amines and acid/base conditions, both in solutions and solid film-solution interface. This work can provide more insights into interface dynamic chemistry and holds great potential for further applications in optical and biomedical materials.
Collapse
Affiliation(s)
- Mingran Si
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, P. R. China
| | - Weijia Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, P. R. China
| | - Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, P. R. China
| | - Mihail Barboiu
- Institut European des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, Montpellier, 34095, France
| | - Jinghua Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, P. R. China
| |
Collapse
|
8
|
|
9
|
Jiao T, Wu G, Zhang Y, Shen L, Lei Y, Wang C, Fahrenbach AC, Li H. Self‐Assembly in Water with N‐Substituted Imines. Angew Chem Int Ed Engl 2020; 59:18350-18367. [DOI: 10.1002/anie.201910739] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/09/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Tianyu Jiao
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Guangcheng Wu
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Yang Zhang
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Libo Shen
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Ye Lei
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Cai‐Yun Wang
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | | | - Hao Li
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| |
Collapse
|
10
|
Zhang W, Xu C, Kobayashi T, Zhong Y, Guo Z, Zhan H, Pruski M, Huang W. Hydrazone-Linked Heptazine Polymeric Carbon Nitrides for Synergistic Visible-Light-Driven Catalysis. Chemistry 2020; 26:7358-7364. [PMID: 32090400 DOI: 10.1002/chem.202000934] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Indexed: 01/07/2023]
Abstract
Heptazine-based conjugated polymeric carbon nitrides (PCNs) are promising metal-free photocatalysts, yet their synthesis is challenging due to the electron-deficiency and insolubility of heptazine units. Indeed, heptazine-containing polymers have only been prepared through nucleophilic substitution with amines by using toxic cyameluric chloride as the starting material. Herein, we report the novel and environmentally friendly method for preparing heptazine-based mesoporous PCNs with hydrazone links formed through a simple Schiff base condensation of melem-NH2 and aldehydes. Unlike cyameluric chloride, melem-NH2 is non-toxic, stable, and can be readily obtained from melem and hydrazine in solution. We demonstrate that the hydrazone linkages and the heptazine units synergistically enhance the photocatalytic activity of PCNs in visible-light-driven aerobic oxidation of benzyl alcohol to benzaldehyde. In particular, the polymer constructed from melem-NH2 and p-phthalaldehyde shows 17 times more activity than graphitic carbon nitride (g-C3 N4 ).
Collapse
Affiliation(s)
- Wei Zhang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China.,Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Congying Xu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | | | - Yun Zhong
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Zhiyong Guo
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Hongbing Zhan
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Marek Pruski
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA.,Ames Laboratory, US Department of Energy, Ames, IA, 50011, USA
| | - Wenyu Huang
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA.,Ames Laboratory, US Department of Energy, Ames, IA, 50011, USA
| |
Collapse
|
11
|
Yin Y, Yun M, Wu L, Duan H, Jiang X, Zhan T, Cui J, Liu L, Zhang K. A Visible‐Light‐Induced Dynamic Mechanical Bond as a Linkage for Dynamic Materials. Angew Chem Int Ed Engl 2019; 58:12705-12710. [PMID: 31297923 DOI: 10.1002/anie.201906761] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Yong‐Fei Yin
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsCollege of Chemistry and Life ScienceZhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Meng‐Yan Yun
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsCollege of Chemistry and Life ScienceZhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Lin Wu
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsCollege of Chemistry and Life ScienceZhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Hong‐Ying Duan
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsCollege of Chemistry and Life ScienceZhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Xia‐Min Jiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsCollege of Chemistry and Life ScienceZhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Tian‐Guang Zhan
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsCollege of Chemistry and Life ScienceZhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Jiecheng Cui
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsCollege of Chemistry and Life ScienceZhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Li‐Juan Liu
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsCollege of Chemistry and Life ScienceZhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Kang‐Da Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsCollege of Chemistry and Life ScienceZhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| |
Collapse
|
12
|
A Visible‐Light‐Induced Dynamic Mechanical Bond as a Linkage for Dynamic Materials. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906761] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Feng X, Liao P, Jiang J, Shi J, Ke Z, Zhang J. Perylene Diimide Based Imine Cages for Inclusion of Aromatic Guest Molecules and Visible‐Light Photocatalysis. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900058] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiying Feng
- Sun Yat-Sen University MOE Laboratory of Polymeric Composite and Functional MaterialsSchool of Materials Science and Engineering Guangzhou 510275 China
| | - Peisen Liao
- Sun Yat-Sen University MOE Laboratory of Polymeric Composite and Functional MaterialsSchool of Materials Science and Engineering Guangzhou 510275 China
| | - Jingxing Jiang
- Sun Yat-Sen University MOE Laboratory of Polymeric Composite and Functional MaterialsSchool of Materials Science and Engineering Guangzhou 510275 China
| | - Jianying Shi
- Sun Yat-Sen University MOE Laboratory of Polymeric Composite and Functional MaterialsSchool of Materials Science and Engineering Guangzhou 510275 China
| | - Zhuofeng Ke
- Sun Yat-Sen University MOE Laboratory of Polymeric Composite and Functional MaterialsSchool of Materials Science and Engineering Guangzhou 510275 China
| | - Jianyong Zhang
- Sun Yat-Sen University MOE Laboratory of Polymeric Composite and Functional MaterialsSchool of Materials Science and Engineering Guangzhou 510275 China
| |
Collapse
|