1
|
Wang YH, Tian JS, Tan PW, Cao Q, Zhang XX, Cao ZY, Zhou F, Wang X, Zhou J. Regiodivergent Intramolecular Nucleophilic Addition of Ketimines for the Diverse Synthesis of Azacycles. Angew Chem Int Ed Engl 2019; 59:1634-1643. [PMID: 31755631 DOI: 10.1002/anie.201910864] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/01/2019] [Indexed: 12/15/2022]
Abstract
Azacycles such as indoles and tetrahydroquinolines are privileged structures in drug development. Reported here is an unprecedented regiodivergent intramolecular nucleophilic addition reaction of imines as a flexible approach to access N-functionalized indoles and tetrahydroquinolines, by the control of reaction at the N-terminus and C-terminus, respectively. Using ketimines derived from 2-(2-nitroethyl)anilines with isatins or α-ketoesters, the regioselective N-attack reaction gives N-functionalized indoles, while the catalytic enantioselective C-attack reaction affords chiral tetrahydroquinolines featuring an α-tetrasubstituted stereocenter. Mechanistic studies reveal that hydrogen-bonding interactions may greatly facilitate such unusual N-attack reactions of imines. The utility of this protocol is highlighted by the catalytic enantioselective formal synthesis of (-)-psychotrimine, and the construction of various fused aza-heterocycles.
Collapse
Affiliation(s)
- Yu-Hui Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China.,Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Jun-Song Tian
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Peng-Wei Tan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Qiang Cao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Xue-Xin Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Zhong-Yan Cao
- College of chemical engineering, Zhejiang university of technology, Chaowang road, 18N, Hangzhou, 310014, P. R. China
| | - Feng Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Xin Wang
- College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
| |
Collapse
|
2
|
Wang Y, Tian J, Tan P, Cao Q, Zhang X, Cao Z, Zhou F, Wang X, Zhou J. Regiodivergent Intramolecular Nucleophilic Addition of Ketimines for the Diverse Synthesis of Azacycles. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yu‐Hui Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 China
- Innovation Research Institute of Traditional Chinese Medicine (IRI) Shanghai University of Traditional Chinese Medicine 1200 Cailun Road Shanghai 201203 China
| | - Jun‐Song Tian
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 China
| | - Peng‐Wei Tan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 China
| | - Qiang Cao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 China
| | - Xue‐Xin Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 China
| | - Zhong‐Yan Cao
- College of chemical engineering Zhejiang university of technology Chaowang road, 18N Hangzhou 310014 P. R. China
| | - Feng Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 China
| | - Xin Wang
- College of Chemistry Sichuan University Chengdu Sichuan 610064 P. R. China
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 P. R. China
| |
Collapse
|
3
|
Cheng Y, Zhao Q, Zhang X, You S. Asymmetric Dearomatization of Indole Derivatives with N‐Hydroxycarbamates Enabled by Photoredox Catalysis. Angew Chem Int Ed Engl 2019; 58:18069-18074. [DOI: 10.1002/anie.201911144] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/26/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Yuan‐Zheng Cheng
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Qing‐Ru Zhao
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- School of Physical Science and TechnologyShanghaiTech University 100 Haike Road Shanghai 201210 China
| | - Xiao Zhang
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Shu‐Li You
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- School of Physical Science and TechnologyShanghaiTech University 100 Haike Road Shanghai 201210 China
| |
Collapse
|
4
|
Luo HY, Dong JW, Xie YY, Song XF, Zhu D, Ding T, Liu Y, Chen ZM. Lewis Base/Brønsted Acid Co-Catalyzed Asymmetric Thiolation of Alkenes with Acid-Controlled Divergent Regioselectivity. Chemistry 2019; 25:15411-15418. [PMID: 31489999 DOI: 10.1002/chem.201904028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Indexed: 11/08/2022]
Abstract
A divergent strategy for the facile preparation of various enantioenriched phenylthio-substituted lactones was developed based on Lewis base/Brønsted acid co-catalyzed thiolation of homoallylic acids. The acid-controlled regiodivergent cyclization (6-endo vs. 5-exo) and acid-mediated stereoselective rearrangement of phenylthio-substituted lactones were explored. Experimental and computational studies were performed to clarify the origins of the regioselectivity and enantioselectivity. The calculation results suggest that C-O and C-S bond formation might occur simultaneously, without formation of a commonly supposed catalyst-coordinated thiiranium ion intermediate and the potential π-π stacking between substrate and SPh as an important factor in the enantio-determining step. Finally, this methodology was applied in the rapid syntheses of the bioactive natural products (+)-ricciocarpin A and (R)-dodecan-4-olide.
Collapse
Affiliation(s)
- Hui-Yun Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Jia-Wei Dong
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Yu-Yang Xie
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Xu-Feng Song
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Deng Zhu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Tongmei Ding
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Yuanyuan Liu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Zhi-Min Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
5
|
Cheng Y, Zhao Q, Zhang X, You S. Asymmetric Dearomatization of Indole Derivatives with N‐Hydroxycarbamates Enabled by Photoredox Catalysis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911144] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yuan‐Zheng Cheng
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Qing‐Ru Zhao
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- School of Physical Science and TechnologyShanghaiTech University 100 Haike Road Shanghai 201210 China
| | - Xiao Zhang
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Shu‐Li You
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- School of Physical Science and TechnologyShanghaiTech University 100 Haike Road Shanghai 201210 China
| |
Collapse
|