1
|
Xu F, Liu AJ, Han SD, Pan J, Wang GM. Decorating Metal Nitrate with a Coplanar Bipyridine Moiety: A Simple and General Method for Fabricating Photochromic Complexes. Chemistry 2021; 27:4709-4714. [PMID: 33428231 DOI: 10.1002/chem.202005402] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/05/2021] [Indexed: 12/17/2022]
Abstract
As a significant class of photochromic materials, crystalline hybrid photochromic materials (CHPMs) have attracted widespread attention of researchers because of their possibilities for generating other photoresponsive properties and advantages in understanding the underlying relationship between structure and photoresponsive performance. The predesign of suitable ligands plays a major role in generating desirable CHPMs. Hitherto, most CHPMs have been built from photodeformable or photoresponsive tectons. However, the synthesis of these ligands is usually time-consuming and expensive, and this greatly restricts their large-scale preparation and practical application. Therefore, it is necessary to explore new families of CHPMs besides the existing CHPMs. Herein, a simple and general method for constructing CHPMs by decorating metal nitrate with a coplanar bipyridine moiety, namely 1,10-phenanthroline (phen), is reported. The resulting products exhibit photocoloration in response to Xe-lamp irradiation. The electron transfer (ET) from the coplanar NO3 - species (as π-electron donors, π-EDs) to coplanar phen moieties (as π-electron acceptors, π-EAs) is responsible for the resulting photochromism. The influence of the coordination environment and central metal ion on the photochromism was also studied. This work demonstrates that the introduction of coplanar organic tectons as π-EAs to metal nitrates as π-EDs with the collaboration of ET and coordination-assembly strategies is a simple and general method to manufacture CHPMs.
Collapse
Affiliation(s)
- Fei Xu
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong, 266071, P. R. China
| | - Ai-Ju Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong, 266071, P. R. China
| | - Song-De Han
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong, 266071, P. R. China
| | - Jie Pan
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong, 266071, P. R. China
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong, 266071, P. R. China
| |
Collapse
|
2
|
Ryu YK, Frisenda R, Castellanos-Gomez A. Superlattices based on van der Waals 2D materials. Chem Commun (Camb) 2019; 55:11498-11510. [PMID: 31483427 DOI: 10.1039/c9cc04919c] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Two-dimensional (2D) materials exhibit a number of improved mechanical, optical, and electronic properties compared to their bulk counterparts. The absence of dangling bonds in the cleaved surfaces of these materials allows combining different 2D materials into van der Waals heterostructures to fabricate p-n junctions, photodetectors, and 2D-2D ohmic contacts that show unexpected performances. These intriguing results are regularly summarized in comprehensive reviews. A strategy to tailor their properties even further and to observe novel quantum phenomena consists in the fabrication of superlattices whose unit cell is formed either by two dissimilar 2D materials or by a 2D material subjected to a periodic perturbation, each component contributing with different characteristics. Furthermore, in a 2D material-based superlattice, the interlayer interaction between the layers mediated by van der Waals forces constitutes a key parameter to tune the global properties of the superlattice. The above-mentioned factors reflect the potential to devise countless combinations of van der Waals 2D material-based superlattices. In the present feature article, we explain in detail the state-of-the-art of 2D material-based superlattices and describe the different methods to fabricate them, classified as vertical stacking, intercalation with atoms or molecules, moiré patterning, strain engineering and lithographic design. We also aim to highlight some of the specific applications of each type of superlattices.
Collapse
Affiliation(s)
- Yu Kyoung Ryu
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Madrid, E-28049, Spain.
| | - Riccardo Frisenda
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Madrid, E-28049, Spain.
| | - Andres Castellanos-Gomez
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Madrid, E-28049, Spain.
| |
Collapse
|
3
|
Li H, Jia XF, Zhao Q, Ma JP, Liu JD, Ye BJ, Kuroiwa Y, Moriyoshi C, Li ZY, Liu Q, Zhang JY, Sun HT. Defective [Bi 2 O 2 ] 2+ Layers Exhibiting Ultrabroad Near-Infrared Luminescence. Chemistry 2019; 25:12842-12848. [PMID: 31376189 DOI: 10.1002/chem.201903403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Indexed: 02/04/2023]
Abstract
Aurivillius phases have been routinely known as excellent ferroelectrics and have rarely been deemed as materials that luminesce in the near-infrared (NIR) region. Herein, it is shown that the Aurivillius phases can demonstrate broadband NIR luminescence that covers telecommunication and biological optical windows. Experimental characterization of the model system Bi2.14 Sr0.75 Ta2 O9-x , combined with theoretical calculations, help to establish that the NIR luminescence originates from defective [Bi2 O2 ]2+ layers. Importantly, the generality of this finding is validated based on observations of a rich bank of NIR luminescence characteristics in other Aurivillius phases. This work highlights that incorporating defects into infinitely repeating [Bi2 O2 ]2+ layers can be used as a powerful tool to space-selectively impart unusual luminescence emitters to Aurivillius-phase ferroelectrics, which not only offers an optical probe for the examination of defect states in ferroelectrics, but also provides possibilities for coupling of the ferroelectric property with NIR luminescence.
Collapse
Affiliation(s)
- Hong Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P.R. China
| | - Xiao-Fang Jia
- Key Laboratory of Micro-nano Measurement, Manipulation and Physics (Ministry of Education), School of Physics, Beihang University, Beijing, 100191, P.R. China
| | - Qing Zhao
- Department of Physical Science, Hiroshima University, Higashihiroshima, Hiroshima, 739-8526, Japan
| | - Ju-Ping Ma
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P.R. China
| | - Jian-Dang Liu
- State Key Laboratory of Particle Detection and Electronics Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Bang-Jiao Ye
- State Key Laboratory of Particle Detection and Electronics Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Yoshihiro Kuroiwa
- Department of Physical Science, Hiroshima University, Higashihiroshima, Hiroshima, 739-8526, Japan
| | - Chikako Moriyoshi
- Department of Physical Science, Hiroshima University, Higashihiroshima, Hiroshima, 739-8526, Japan
| | - Zhi-Yong Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P.R. China
| | - Qi Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P.R. China
| | - Jun-Ying Zhang
- Key Laboratory of Micro-nano Measurement, Manipulation and Physics (Ministry of Education), School of Physics, Beihang University, Beijing, 100191, P.R. China
| | - Hong-Tao Sun
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P.R. China
| |
Collapse
|