Jiang J, Han L, Ge F, Xiao Y, Cheng R, Tong X, Zhao Y. Porous Liquid Crystalline Networks with Hydrogel-Like Actuation and Reconfigurable Function.
Angew Chem Int Ed Engl 2021;
61:e202116689. [PMID:
34970834 DOI:
10.1002/anie.202116689]
[Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Indexed: 11/08/2022]
Abstract
A porous liquid crystalline network (LCN), prepared using a template method, was found to exhibit peculiar actuation functions. The creation of porosity makes the initially hydrophobic LCN behave like a hydrogel, capable of absorbing a large volume of water (up to ten times the sample size of LCN). When the amount of absorbed water is relatively small (about 100% swelling ratio), the porous LCN displays anisotropic swelling in water and, in the same time, the retained uniaxial alignment of mesogens ensures thermally induced shape change associated with LC-isotropic phase transition. Combining the characteristic actuation mechanisms of LCN (order-disorder transition of mesogens) and hydrogel (water absorption), such porous LCN can be explored for versatile stimuli-triggered shape transformations. Moreover, the porosity enables loading/removal/reloading of functional fillers such as ionic liquid, photothermal dye and fluorophore, which imparts a same porous LCN actuator with reconfigurable functions such as ionic conductivity, light-driven locomotion, and emissive color.
Collapse