1
|
Peng Y, Sanati S, Morsali A, García H. Metal-Organic Frameworks as Electrocatalysts. Angew Chem Int Ed Engl 2023; 62:e202214707. [PMID: 36468543 DOI: 10.1002/anie.202214707] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/11/2022]
Abstract
Transition metal complexes are well-known homogeneous electrocatalysts. In this regard, metal-organic frameworks (MOFs) can be considered as an ensemble of transition metal complexes ordered in a periodic arrangement. In addition, MOFs have several additional positive structural features that make them suitable for electrocatalysis, including large surface area, high porosity, and high content of accessible transition metal with exchangeable coordination positions. The present review describes the current state in the use of MOFs as electrocatalysts, both as host of electroactive guests and their direct electrocatalytic activity, particularly in the case of bimetallic MOFs. The field of MOF-derived materials is purposely not covered, focusing on the direct use of MOFs or its composites as electrocatalysts. Special attention has been paid to present strategies to overcome their poor electrical conductivity and limited stability.
Collapse
Affiliation(s)
- Yong Peng
- Instituto deTecnología Química,CSIV-UPV, Av.Delos Naranjos s/n, 46022, Valencia, Spain.,Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße29a, 18059, Rostock, Germany
| | - Soheila Sanati
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, 14115 175, Iran
| | - Ali Morsali
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, 14115 175, Iran
| | - Hermenegildo García
- Instituto deTecnología Química,CSIV-UPV, Av.Delos Naranjos s/n, 46022, Valencia, Spain
| |
Collapse
|
2
|
Sun D, Wong LW, Wong HY, Lai KH, Ye L, Xv X, Ly TH, Deng Q, Zhao J. Direct Visualization of Atomic Structure in Multivariate Metal-Organic Frameworks (MOFs) for Guiding Electrocatalysts Design. Angew Chem Int Ed Engl 2023; 62:e202216008. [PMID: 36399056 DOI: 10.1002/anie.202216008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/19/2022]
Abstract
The direct utilization of metal-organic frameworks (MOFs) for electrocatalytic oxygen evolution reaction (OER) has attracted increasing interests. Herein, we employ the low-dose integrated differential phase contrast-scanning transmission electron microscopy (iDPC-STEM) technique to visualize the atomic structure of multivariate MOFs (MTV-MOFs) for guiding the structural design of bulk MOFs for efficient OER. The iDPC-STEM images revealed that incorporating Fe3+ or 2-aminoterephthalate (ATA) into Ni-BDC (BDC: benzenedicarboxylate) can introduce inhomogeneous lattice strain that weaken the coordination bonds, which can be selectively cleaved via a mild heat treatment to simultaneously generate coordinatively unsaturated metal sites, conductive Ni@C and hierarchical porous structure. Thus, excellent OER activity with current densities of 10 and 100 mA cm-2 are achieved over the defective MOFs at small overpotentials of 286 mV and 365 mV, respectively, which is superior to the commercial RuO2 catalyst and most of the bulk MOFs.
Collapse
Affiliation(s)
- Dengrong Sun
- Department of Applied Physics, The Hong Kong Polytechnic University Hung Hom, Kowloon, Hong Kong, China.,College of Architecture and Environment, National Engineering Research Centre for Flue Gas Desulfurization, Carbon Neutral Technology Innovation Center of Sichuan, Sichuan University, Chengdu, 610065, China
| | - Lok Wing Wong
- Department of Applied Physics, The Hong Kong Polytechnic University Hung Hom, Kowloon, Hong Kong, China
| | - Hok Yin Wong
- Department of Applied Physics, The Hong Kong Polytechnic University Hung Hom, Kowloon, Hong Kong, China
| | - Ka Hei Lai
- Department of Applied Physics, The Hong Kong Polytechnic University Hung Hom, Kowloon, Hong Kong, China
| | - Lin Ye
- Department of Applied Physics, The Hong Kong Polytechnic University Hung Hom, Kowloon, Hong Kong, China
| | - Xinyao Xv
- Physics Department and Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huaian, 223300, China
| | - Thuc Hue Ly
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong, China
| | - Qingming Deng
- Physics Department and Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huaian, 223300, China
| | - Jiong Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
3
|
Zhang L, Wang J, Jiang K, Xiao Z, Gao Y, Lin S, Chen B. Self-Reconstructed Metal-Organic Framework Heterojunction for Switchable Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2022; 61:e202214794. [PMID: 36278261 DOI: 10.1002/anie.202214794] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Indexed: 11/18/2022]
Abstract
Designing metal-organic framework (MOF)-based catalysts with superior oxygen evolution reaction (OER) activity and robust durability simultaneously is highly required yet very challenging due to the limited intrinsic activity and their elusive evolution under harsh OER conditions. Herein, a steady self-reconstructed MOF heterojunction is constructed via redox electrochemistry and topology-guided strategy. Thanks to the inhibiting effect from hydrogen bonds of Ni-BDC-1 (BDC=1,4-benzenedicarboxylic acid), the obatained MOF heterojunction shows greatly improved OER activity with low overpotential of 225 mV at 10 mA cm-2 , relative to the totally reconstructed Ni-BDC-3 (332 mV). Density function theory calculations reveal that the formed built-in electric field in the MOF heterojunction remarkably optimizes the ad/desorption free energy of active Ni sites. Moreover, such MOF heterojunction shows superior durability attributed to the shielding effect of the surface-evolved NiOOH coating.
Collapse
Affiliation(s)
- Ling Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Jiaji Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Ke Jiang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Zhaohui Xiao
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Yuntian Gao
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Shiwei Lin
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio One UTSA Circle, San Antonio, Texas, 78249-0698, USA
| |
Collapse
|
4
|
Yu H, Wang L, Li H, Luo Z, Isimjan TT, Yang X. Improving the Electrocatalytic Activity of a Nickel‐Organic Framework toward the Oxygen Evolution Reaction through Vanadium Doping. Chemistry 2022; 28:e202201784. [DOI: 10.1002/chem.202201784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Hongbo Yu
- Guangxi Key Laboratory of Low Carbon Energy Materials School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin 541004 P. R. China
| | - Lixia Wang
- Guangxi Key Laboratory of Low Carbon Energy Materials School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin 541004 P. R. China
| | - Huatong Li
- Guangxi Key Laboratory of Low Carbon Energy Materials School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin 541004 P. R. China
| | - Zuyang Luo
- Guangxi Key Laboratory of Low Carbon Energy Materials School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin 541004 P. R. China
| | - Tayirjan Taylor Isimjan
- Saudi Arabia Basic Industries Corporation (SABIC) at King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Xiulin Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin 541004 P. R. China
| |
Collapse
|
5
|
Zhang HD, Wu YL, Ye SY, Hua YW, You XX, Yan Z, Li ML, Liu D, Meng Y, Cao X. Configuration‐Dependent Bimetallic Metal‐Organic Frameworks Nanorods for Efficient Electrocatalytic Water Oxidation. ChemElectroChem 2022. [DOI: 10.1002/celc.202200246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hao-Dong Zhang
- Anqing Normal University Anhui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials CHINA
| | - Ya-Ling Wu
- Anqing Normal University Anhui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials CHINA
| | - Si-Yuan Ye
- Jiaxing University College of Biological, Chemical Sciences and Engineering CHINA
| | - Yi-Wei Hua
- Jiaxing University College of Biological, Chemical Sciences and Engineering CHINA
| | - Xi-Xi You
- Jiaxing University College of Biological, Chemical Sciences and Engineering CHINA
| | - Zheng Yan
- Jiaxing University College of biological,Chemical Sciences and Engineering Jiaxing city, zhejiang province, yuexiu south road no. 56 314001 Jia xing CHINA
| | - Meng-Li Li
- Jiaxing University College of Biological, Chemical Sciences and Engineering CHINA
| | - Dan Liu
- Jiaxing University College of Biological, Chemical Sciences and Engineering CHINA
| | - Yan Meng
- Anqing Normal University Anhui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials CHINA
| | - Xuebo Cao
- Jiaxing University College of Biological, Chemical Sciences and Engineering CHINA
| |
Collapse
|
6
|
Zhou C, Cao X, Sun Z, Wei Y, Zhang Q. In‐situ Growth of Ultrathin NiO Nanosheets‐Arrays on MOF‐derived Porous Co3O4 Scaffolds as a High‐performance Cathode for Asymmetric Supercapacitors. ChemElectroChem 2022. [DOI: 10.1002/celc.202101675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chenming Zhou
- Bohai University College of Chemistry and Materials Engineering CHINA
| | - Xiaoman Cao
- Bohai University College of Chemistry and Materials Engineering CHINA
| | - Zhijia Sun
- Bohai University College of Chemistry and Materials Engineering No.19 keji Road, Songshan New District 121013 Jinzhou CHINA
| | - Ying Wei
- Bohai University College of Chemistry and Materials Engineering CHINA
| | - Qingguo Zhang
- Bohai University College of Chemistry and Materials Engineering CHINA
| |
Collapse
|
7
|
Yang Y, Ji Y, Li G, Li Y, Jia B, Yan J, Ma T, Liu S(F. IrO
x
@In
2
O
3
Heterojunction from Individually Crystallized Oxides for Weak‐Light‐Promoted Electrocatalytic Water Oxidation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yumei Yang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering Shaanxi Normal University Xi'an 710119 People's Republic of China
| | - Yujin Ji
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 People's Republic of China
| | - Guangyu Li
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering Shaanxi Normal University Xi'an 710119 People's Republic of China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 People's Republic of China
| | - Baohua Jia
- Centre for Translational Atomaterials Swinburne University of Technology Hawthorn VIC 3122 Australia
| | - Junqing Yan
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering Shaanxi Normal University Xi'an 710119 People's Republic of China
| | - Tianyi Ma
- Centre for Translational Atomaterials Swinburne University of Technology Hawthorn VIC 3122 Australia
| | - Shengzhong (Frank) Liu
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering Shaanxi Normal University Xi'an 710119 People's Republic of China
| |
Collapse
|
8
|
Yang Y, Ji Y, Li G, Li Y, Jia B, Yan J, Ma T, Liu SF. IrO x @In 2 O 3 Heterojunction from Individually Crystallized Oxides for Weak-Light-Promoted Electrocatalytic Water Oxidation. Angew Chem Int Ed Engl 2021; 60:26790-26797. [PMID: 34591342 DOI: 10.1002/anie.202112042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Indexed: 12/24/2022]
Abstract
Multi-field coupling, especially photo-assisted electrocatalysis, has recently been studied to further improve the oxygen evolution reaction (OER). In this study, an n-type cubic In2 O3 semiconductor is employed for the first time to load IrOx species (Ir-In2 O3 mass ratio: 17.6 %). Consequently, the IrOx @In2 O3 heterojunction, which exhibits outstanding OER performance promoted by weak-light irradiation, is formed. Notably, IrOx (approximately 1.7 nm in size) and In2 O3 are observed to crystallize independently during heterogeneous nucleation with no Ir atoms doped in the In2 O3 lattice. This avoids Ir loss and ensures the full exposure of all Ir-based sites. The IrOx @In2 O3 heterojunction exhibits enhanced electrocatalytic water oxidation with overpotential values of 190 and 231 mV at current densities of 10 and 50 mA cm-2 , surpassing all IrOx -based catalyst results reported to date. Nano-sized IrOx on the surface, irradiated by the weak-light beam of LED-365 (1.8 mW cm-2 ), can be fully activated as an OER site. Moreover, the overpotential is further reduced to 176 and 210 mV to deliver the corresponding current. This work is anticipated to aid in the design of more efficient multi-field coupling OER systems.
Collapse
Affiliation(s)
- Yumei Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, People's Republic of China
| | - Yujin Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Guangyu Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, People's Republic of China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Baohua Jia
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Junqing Yan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, People's Republic of China
| | - Tianyi Ma
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, People's Republic of China
| |
Collapse
|
9
|
Li CF, Zhao JW, Xie LJ, Wu JQ, Ren Q, Wang Y, Li GR. Surface-Adsorbed Carboxylate Ligands on Layered Double Hydroxides/Metal-Organic Frameworks Promote the Electrocatalytic Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2021; 60:18129-18137. [PMID: 33982379 DOI: 10.1002/anie.202104148] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/29/2021] [Indexed: 02/03/2023]
Abstract
Metal-organic frameworks (MOFs) with carboxylate ligands as co-catalysts are very efficient for the oxygen evolution reaction (OER). However, the role of local adsorbed carboxylate ligands around the in-situ-transformed metal (oxy)hydroxides during OER is often overlooked. We reveal the extraordinary role and mechanism of surface-adsorbed carboxylate ligands on bi/trimetallic layered double hydroxides (LDHs)/MOFs for OER electrocatalytic activity enhancement. The results of X-ray photoelectron spectroscopy (XPS), synchrotron X-ray absorption spectroscopy, and density functional theory (DFT) calculations show that the carboxylic groups around metal (oxy)hydroxides can efficiently induce interfacial electron redistribution, facilitate an abundant high-valence state of nickel species with a partially distorted octahedral structure, and optimize the d-band center together with the beneficial Gibbs free energy of the intermediate. Furthermore, the results of in situ Raman and FTIR spectra reveal that the surface-adsorbed carboxylate ligands as Lewis base can promote sluggish OER kinetics by accelerating proton transfer and facilitating adsorption, activation, and dissociation of hydroxyl ions (OH- ).
Collapse
Affiliation(s)
- Cheng-Fei Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jia-Wei Zhao
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ling-Jie Xie
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jin-Qi Wu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qian Ren
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yu Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Gao-Ren Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
10
|
Li C, Zhao J, Xie L, Wu J, Ren Q, Wang Y, Li G. Surface‐Adsorbed Carboxylate Ligands on Layered Double Hydroxides/Metal–Organic Frameworks Promote the Electrocatalytic Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104148] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Cheng‐Fei Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Jia‐Wei Zhao
- MOE Laboratory of Bioinorganic and Synthetic Chemistry The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Ling‐Jie Xie
- MOE Laboratory of Bioinorganic and Synthetic Chemistry The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Jin‐Qi Wu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Qian Ren
- MOE Laboratory of Bioinorganic and Synthetic Chemistry The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Yu Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Gao‐Ren Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| |
Collapse
|
11
|
Guan Y, Lai J, Xu G. Recent Advances on Electrocatalysis Using Pristinely Conductive Metal‐Organic Frameworks and Covalent Organic Frameworks. ChemElectroChem 2021. [DOI: 10.1002/celc.202100492] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yiran Guan
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 Jilin P. R. China
- University of Science and Technology of China Hefei 230026 Anhui P. R. China
| | - Jianping Lai
- Key Laboratory of Eco-chemical Engineering Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science Taishan scholar advantage and characteristic discipline team of Eco-chemical process and technology College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 Jilin P. R. China
- University of Science and Technology of China Hefei 230026 Anhui P. R. China
| |
Collapse
|
12
|
Lai Y, Xiao L, Tao Y, Gao Z, Zhang L, Su X, Dai Y. Enhancing One-Dimensional Charge Transport in Metal-organic Framework Hexagonal Nanorods for Electrocatalytic Oxygen Evolution. CHEMSUSCHEM 2021; 14:1830-1834. [PMID: 33656797 DOI: 10.1002/cssc.202100179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Metal-organic frameworks (MOFs) have exhibited huge potential in electrocatalytic fields. However, the intrinsic low conductivity and the blockage of metal active sites by organic linkers still seriously hinder their large-scale application. In this study, as a proof of principle, constructing cofacial π-π stacking in the terminal ligand (4,4'-bipyridine) of a Ni/Fe-chain-based MOF to fabricate strong π-π interaction, in combination with unique hexagonal nanorod (HXR) structure, is found to be an effective strategy to enhance one-dimensional charge carrier efficiency and thus achieve excellent activity in the oxygen evolution reaction (OER). The approach yields a high turnover frequency (4.54 s-1 ) in well-designed bimetallic chain-based MOFs (NiFe-HXR) at an overpotential of 350 mV, which is about 8.7 and 34.9 times higher than those in Ni-HXR (0.52 s-1 ) and IrO2 (0.13 s-1 ), respectively. This work effectively combines "through-bond" channel in chain-based structure of NiFe-HXR and "through-space" transport between face-to-face terminal ligands, thus resulting in outstanding OER activity. This strategy of modulating the structure chemistry and morphology of MOFs to promote the OER may open a new perspective to synthesize MOFs for energy-relevant electrochemical reactions.
Collapse
Affiliation(s)
- Yulian Lai
- State Key Laboratory of Nuclear Resources and Environment, School of Biology, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi, 330013, P. R. China
| | - Longhui Xiao
- State Key Laboratory of Nuclear Resources and Environment, School of Biology, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi, 330013, P. R. China
| | - Yuan Tao
- State Key Laboratory of Nuclear Resources and Environment, School of Biology, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi, 330013, P. R. China
| | - Zhi Gao
- State Key Laboratory of Nuclear Resources and Environment, School of Biology, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi, 330013, P. R. China
| | - Liuxin Zhang
- State Key Laboratory of Nuclear Resources and Environment, School of Biology, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi, 330013, P. R. China
| | - Xuemin Su
- State Key Laboratory of Nuclear Resources and Environment, School of Biology, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi, 330013, P. R. China
| | - Ying Dai
- State Key Laboratory of Nuclear Resources and Environment, School of Biology, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi, 330013, P. R. China
| |
Collapse
|
13
|
Zheng D, Wen H, Sun X, Guan X, Zhang J, Tian W, Feng H, Wang H, Yao Y. Ultrathin Mn Doped Ni-MOF Nanosheet Array for Highly Capacitive and Stable Asymmetric Supercapacitor. Chemistry 2020; 26:17149-17155. [PMID: 32767604 DOI: 10.1002/chem.202003220] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/03/2020] [Indexed: 11/05/2022]
Abstract
In this study, we demonstrate that an Mn-doped ultrathin Ni-MOF nanosheet array on nickel foam (Mn0.1 -Ni-MOF/NF) serves as a highly capacitive and stable supercapacitor positive electrode. The Mn0.1 -Ni-MOF/NF shows an areal capacity of 6.48 C cm-2 (specific capacity C: 1178 C g-1 ) at 2 mA cm-2 in 6.0 m KOH, outperforming most reported MOF-based materials. More importantly, it possesses excellent cycle stability to maintain 80.6 % capacity after 5000 cycles. An asymmetric supercapacitor device utilizing Mn0.1 -Ni-MOF/NF as the positive electrode and activated carbon as the negative electrode attains a high energy density of 39.6 Wh kg-1 at 143.8 Wkg-1 power density with a capacitance retention of 83.6 % after 5000 cycles.
Collapse
Affiliation(s)
- Dengchao Zheng
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Hao Wen
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Xun Sun
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Xin Guan
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Wenli Tian
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Hao Feng
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Hongjing Wang
- West China Second University Hospital, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yadong Yao
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
| |
Collapse
|
14
|
Bai XJ, Lu XY, Ju R, Chen H, Shao L, Zhai X, Li YN, Fan FQ, Fu Y, Qi W. Preparation of MOF Film/Aerogel Composite Catalysts via Substrate-Seeding Secondary-Growth for the Oxygen Evolution Reaction and CO 2 Cycloaddition. Angew Chem Int Ed Engl 2020; 60:701-705. [PMID: 32975866 DOI: 10.1002/anie.202012354] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 11/08/2022]
Abstract
Substrate-supported metal-organic frameworks (MOFs) films are desired to realize their potential in practical applications. Herein, a novel substrate-seeding secondary-growth strategy is developed to prepare composites of uniform MOFs films on aerogel walls. Briefly, the organic ligand is "pre-seeded" onto the aerogel walls, and then a small amount of metal-ion solution is sprayed onto the prepared aerogel. The sprayed solution diffuses along the aerogel walls to form a continuous thin layer, which confines the nucleation reaction, promoting the formation of uniform MOFs films on the aerogel walls. The whole process is simple in operation, highly efficient, and eco-friendly. The resulting hierarchical MOFs/aerogel composites have abundant accessible active sites and enable excellent mass transfer, which endows the composite with outstanding catalytic activity and stability in both liquid-phase CO2 cycloaddition and electrochemical oxygen evolution reaction (OER) process.
Collapse
Affiliation(s)
- Xiao-Jue Bai
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Xing-Yu Lu
- Institute of Metal Research, Shenyang National Laboratory for Materials Science, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Ran Ju
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Huan Chen
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Lei Shao
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Xu Zhai
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Yu-Nong Li
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Fu-Qiang Fan
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Yu Fu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Wei Qi
- Institute of Metal Research, Shenyang National Laboratory for Materials Science, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| |
Collapse
|
15
|
Bai X, Lu X, Ju R, Chen H, Shao L, Zhai X, Li Y, Fan F, Fu Y, Qi W. Preparation of MOF Film/Aerogel Composite Catalysts via Substrate‐Seeding Secondary‐Growth for the Oxygen Evolution Reaction and CO
2
Cycloaddition. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiao‐Jue Bai
- Department of Chemistry College of Sciences Northeastern University Shenyang 110819 P. R. China
| | - Xing‐Yu Lu
- Institute of Metal Research Shenyang National Laboratory for Materials Science Chinese Academy of Sciences Shenyang 110016 P. R. China
| | - Ran Ju
- Department of Chemistry College of Sciences Northeastern University Shenyang 110819 P. R. China
| | - Huan Chen
- Department of Chemistry College of Sciences Northeastern University Shenyang 110819 P. R. China
| | - Lei Shao
- Department of Chemistry College of Sciences Northeastern University Shenyang 110819 P. R. China
| | - Xu Zhai
- Department of Chemistry College of Sciences Northeastern University Shenyang 110819 P. R. China
| | - Yu‐Nong Li
- Department of Chemistry College of Sciences Northeastern University Shenyang 110819 P. R. China
| | - Fu‐Qiang Fan
- Department of Chemistry College of Sciences Northeastern University Shenyang 110819 P. R. China
| | - Yu Fu
- Department of Chemistry College of Sciences Northeastern University Shenyang 110819 P. R. China
| | - Wei Qi
- Institute of Metal Research Shenyang National Laboratory for Materials Science Chinese Academy of Sciences Shenyang 110016 P. R. China
| |
Collapse
|
16
|
Zheng HL, Huang SL, Luo MB, Wei Q, Chen EX, He L, Lin Q. Photochemical In Situ Exfoliation of Metal-Organic Frameworks for Enhanced Visible-Light-Driven CO 2 Reduction. Angew Chem Int Ed Engl 2020; 59:23588-23592. [PMID: 32926488 DOI: 10.1002/anie.202012019] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Indexed: 12/24/2022]
Abstract
Two novel two-dimensional metal-organic frameworks (2D MOFs), 2D-M2 TCPE (M=Co or Ni, TCPE=1,1,2,2-tetra(4-carboxylphenyl)ethylene), which are composed of staggered (4,4)-grid layers based on paddlewheel-shaped dimers, serve as heterogeneous photocatalysts for efficient reduction of CO2 to CO. During the visible-light-driven catalysis, these structures undergo in situ exfoliation to form nanosheets, which exhibit excellent stability and improved catalytic activity. The exfoliated 2D-M2 TCPE nanosheets display a high CO evolution rate of 4174 μmol g-1 h-1 and high selectivity of 97.3 % for M=Co and Ni, and thus are superior to most reported MOFs. The performance differences and photocatalytic mechanisms have been studied with theoretical calculations and photoelectric experiments. This study provides new insight for the controllable synthesis of effective crystalline photocatalysts based on structural and morphological coregulation.
Collapse
Affiliation(s)
- Hui-Li Zheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Shan-Lin Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Ming-Bu Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Qin Wei
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Er-Xia Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Liang He
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Qipu Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| |
Collapse
|
17
|
Zheng H, Huang S, Luo M, Wei Q, Chen E, He L, Lin Q. Photochemical In Situ Exfoliation of Metal–Organic Frameworks for Enhanced Visible‐Light‐Driven CO
2
Reduction. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hui‐Li Zheng
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Shan‐Lin Huang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Ming‐Bu Luo
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Qin Wei
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Er‐Xia Chen
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Liang He
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Qipu Lin
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| |
Collapse
|
18
|
Wang C, Qi L. Heterostructured Inter‐Doped Ruthenium–Cobalt Oxide Hollow Nanosheet Arrays for Highly Efficient Overall Water Splitting. Angew Chem Int Ed Engl 2020; 59:17219-17224. [DOI: 10.1002/anie.202005436] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Indexed: 01/10/2023]
Affiliation(s)
- Cheng Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS) College of Chemistry Peking University Beijing 100871 China
| | - Limin Qi
- Beijing National Laboratory for Molecular Sciences (BNLMS) College of Chemistry Peking University Beijing 100871 China
| |
Collapse
|
19
|
Wang C, Qi L. Heterostructured Inter‐Doped Ruthenium–Cobalt Oxide Hollow Nanosheet Arrays for Highly Efficient Overall Water Splitting. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005436] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Cheng Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS) College of Chemistry Peking University Beijing 100871 China
| | - Limin Qi
- Beijing National Laboratory for Molecular Sciences (BNLMS) College of Chemistry Peking University Beijing 100871 China
| |
Collapse
|
20
|
Zhou W, Yang L, Zhou FY, Deng QW, Wang X, Zhai D, Ren GQ, Han KL, Deng WQ, Sun L. Salen-Based Conjugated Microporous Polymers for Efficient Oxygen Evolution Reaction. Chemistry 2020; 26:7720-7726. [PMID: 32281693 DOI: 10.1002/chem.202001039] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Indexed: 11/07/2022]
Abstract
Exploring high-performance electrocatalysts, especially non-noble metal electrocatalysts, for the oxygen evolution reaction (OER) is critical to energy storage and conversion. Herein, we report for the first time that conjugated microporous polymers (CMPs) incorporating salen can be used as OER electrocatalysts with outstanding performances. The best OER electrocatalyst (salen-CMP-Fe-3) exhibits a low Tafel slope of 63 mV dec-1 and an overpotential of 238 mV at 10 mA cm-2 . DFT and Grand Canonical Monte Carlo calculations confirmed that the significantly improved electrocatalytic properties can be attributed to the intrinsic catalytic activity of the salen moiety and the enrichment effect of the pore structures. This work demonstrates that salen-based conjugated polymers are a type of metal-coordinated porous polymer that show excellent catalyst performance.
Collapse
Affiliation(s)
- Wei Zhou
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Li Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Fu-Yu Zhou
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Qi-Wen Deng
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Xiao Wang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Dong Zhai
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Guo-Qing Ren
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Ke-Li Han
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China.,State Key Laboratory of Molecular Reaction Dynamics, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Wei-Qiao Deng
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China.,State Key Laboratory of Molecular Reaction Dynamics, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Lei Sun
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| |
Collapse
|
21
|
Tian J, Jiang F, Yuan D, Zhang L, Chen Q, Hong M. Electric‐Field Assisted In Situ Hydrolysis of Bulk Metal–Organic Frameworks (MOFs) into Ultrathin Metal Oxyhydroxide Nanosheets for Efficient Oxygen Evolution. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jiayue Tian
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of the Chinese Academy of Sciences Beijing 100049 China
- Henan Provincial Key Laboratory of Surface & Interface Science Zhengzhou University of Light Industry Zhengzhou 450001 China
| | - Feilong Jiang
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Daqiang Yuan
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Linjie Zhang
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Qihui Chen
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Maochun Hong
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Henan Provincial Key Laboratory of Surface & Interface Science Zhengzhou University of Light Industry Zhengzhou 450001 China
| |
Collapse
|
22
|
Tian J, Jiang F, Yuan D, Zhang L, Chen Q, Hong M. Electric‐Field Assisted In Situ Hydrolysis of Bulk Metal–Organic Frameworks (MOFs) into Ultrathin Metal Oxyhydroxide Nanosheets for Efficient Oxygen Evolution. Angew Chem Int Ed Engl 2020; 59:13101-13108. [DOI: 10.1002/anie.202004420] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Jiayue Tian
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of the Chinese Academy of Sciences Beijing 100049 China
- Henan Provincial Key Laboratory of Surface & Interface Science Zhengzhou University of Light Industry Zhengzhou 450001 China
| | - Feilong Jiang
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Daqiang Yuan
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Linjie Zhang
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Qihui Chen
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Maochun Hong
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Henan Provincial Key Laboratory of Surface & Interface Science Zhengzhou University of Light Industry Zhengzhou 450001 China
| |
Collapse
|
23
|
Huang ZQ, Wang B, Pan DS, Zhou LL, Guo ZH, Song JL. Rational Design of a N,S Co-Doped Supermicroporous CoFe-Organic Framework Platform for Water Oxidation. CHEMSUSCHEM 2020; 13:2564-2570. [PMID: 32196953 DOI: 10.1002/cssc.202000376] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/20/2020] [Indexed: 06/10/2023]
Abstract
It remains a challenge to rational design of a new metal-organic framework (MOF) as highly efficient direct electrocatalysts for the oxygen evolution reaction (OER). Herein, we developed a simple and effective method to explore a new pillared-layered MOF with syringic acid as a promising OER electrocatalyst. The isostructural mono-, heterobimetallic MOF and N,S co-doped MOF by mixing thiourea were quickly synthesized in a high yield under solvothermal condition. Moreover, the optimized N,S co-doped MOF exhibits the lowest overpotential of 254 mV at 10 mA cm-2 on a glass carbon electrode and a small Tafel slope of 50 mV dec-1 , especially, this catalyst also possesses long-term electrochemical durability for at least 16 h. According to the characterization, the incorporation of N and S atoms into this heterobimetallic CoFe-based MOF could modify its pore structure, tune the electronic structure, accordingly, improve the mass and electron transportation, and facilitate the formation of active species, as a consequence, the improved activity of this new N,S co-doped MOF for OER should be mainly be ascribed to higher electrochemical activation toward the active species via in situ surface modification during the OER process.
Collapse
Affiliation(s)
- Zhao-Qian Huang
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi, 214122, P.R. China
| | - Bin Wang
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi, 214122, P.R. China
| | - Dong-Sheng Pan
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi, 214122, P.R. China
| | - Ling-Li Zhou
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi, 214122, P.R. China
| | - Zheng-Han Guo
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi, 214122, P.R. China
| | - Jun-Ling Song
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi, 214122, P.R. China
| |
Collapse
|
24
|
Rajmohan R, Vrla G, Ueki H, Sajna K, Takei T, Ohtsu H, Kawano M, Vairaprakash P, Tashiro K. Amyloid-like Nanofibrillation of Metal-Organic Complex Arrays Ruled by Their Precisely Designed Metal Sequences. Chem Asian J 2020; 15:766-769. [PMID: 32017411 DOI: 10.1002/asia.201901674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/20/2020] [Indexed: 12/17/2022]
Abstract
Self-assembly of a series of dimetallic sequences constructed on a backbone with two successive tyrosine moieties (Fmoc-M1 -M2 -CO2 H) revealed that the resultant morphology is clearly dependent on the metal sequence, where Re-containing sequences such as homometallic Fmoc-Re-Re-CO2 H specifically afforded amyloid-like nanofibers. These findings further allowed to achieve the fibrillation of a longer metal sequence containing three different metals (Fmoc-Rh-Pt-Re-Re-CO2 H). Cyclic voltammetry of the fibrillated Fmoc-Re-Re-CO2 H demonstrated that the redox activity of the metal complexes in the sequence is preserved in the nanofibrous forms.
Collapse
Affiliation(s)
- Rajamani Rajmohan
- Department of Chemistry School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Geoffrey Vrla
- Department of Chemistry & Biochemistry, Middlebury College VT, USA
| | - Hisanori Ueki
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Kappamveettil Sajna
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Toshiaki Takei
- Nanotechnology Innovation Station, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| | - Hiroyoshi Ohtsu
- Department of Chemistry School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Masaki Kawano
- Department of Chemistry School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Pothiappan Vairaprakash
- Department of Chemistry School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Kentaro Tashiro
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| |
Collapse
|
25
|
Gao Z, Yu ZW, Liu FQ, Yang C, Yuan YH, Yu Y, Luo F. Stable Iron Hydroxide Nanosheets@Cobalt-Metal-Organic-Framework Heterostructure for Efficient Electrocatalytic Oxygen Evolution. CHEMSUSCHEM 2019; 12:4623-4628. [PMID: 31407864 DOI: 10.1002/cssc.201902118] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Indexed: 06/10/2023]
Abstract
Most studies are devoted to the use of metal-organic frameworks (MOFs) as templates to construct desirable electrocatalysts in situ by high-temperature pyrolysis. The emergence of heterostructures invokes new opportunities to use the full potential of pristine MOFs as efficient catalysts in the oxygen evolution reaction (OER). Here, a MOF surface-reaction strategy is developed to synthesize MOF-based heterostructures without pyrolysis. Uniform Fe(OH)3 nanosheets are grown controllably on the Co-MOF-74 surface by a fast "phenol-Fe" reaction that takes advantage of the hydroxyl sites in Co-MOF-74. The resulting Fe(OH)3 @Co-MOF-74 heterostructure delivers an excellent performance in the OER with a low overpotential of 292 mV at 10 mA cm-2 . Notably, the introduction of Fe can improve the intrinsic activity of the original Co atom significantly. The turnover frequency in Fe(OH)3 @Co-MOF-74 (1.209 s-1 ) is more than 25 times higher than that in Co-MOF-74 (0.048 s-1 ). This work presents a fresh concept for the fundamental design of advanced pure-MOF-based heterostructures and, thereby, provides a new avenue for the fabrication of other energy-conversion and -storage materials.
Collapse
Affiliation(s)
- Zhi Gao
- State Key Laboratory of Nuclear Resources and Environment, School of Biology, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi, 330013, P.R. China
| | - Zhi Wu Yu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230031, Anhui, P.R. China
| | - Feng Qing Liu
- State Key Laboratory of Nuclear Resources and Environment, School of Biology, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi, 330013, P.R. China
| | - Chuo Yang
- State Key Laboratory of Nuclear Resources and Environment, School of Biology, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi, 330013, P.R. China
| | - Ya Hong Yuan
- State Key Laboratory of Nuclear Resources and Environment, School of Biology, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi, 330013, P.R. China
| | - Yi Yu
- State Key Laboratory of Nuclear Resources and Environment, School of Biology, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi, 330013, P.R. China
| | - Feng Luo
- State Key Laboratory of Nuclear Resources and Environment, School of Biology, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi, 330013, P.R. China
| |
Collapse
|
26
|
Li Y, Wang Y, Xue Y, Li H, Zhai Q, Li S, Jiang Y, Hu M, Bu X. Ultramicroporous Building Units as a Path to Bi‐microporous Metal–Organic Frameworks with High Acetylene Storage and Separation Performance. Angew Chem Int Ed Engl 2019; 58:13590-13595. [DOI: 10.1002/anie.201908378] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/27/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Yong‐Peng Li
- Key Laboratory of Macromolecular Science of Shaanxi ProvinceKey Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry & Chemical EngineeringShaanxi Normal University Xi'an Shaanxi 710062 China
| | - Ying Wang
- Key Laboratory of Macromolecular Science of Shaanxi ProvinceKey Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry & Chemical EngineeringShaanxi Normal University Xi'an Shaanxi 710062 China
| | - Ying‐Ying Xue
- Key Laboratory of Macromolecular Science of Shaanxi ProvinceKey Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry & Chemical EngineeringShaanxi Normal University Xi'an Shaanxi 710062 China
| | - Hai‐Peng Li
- Key Laboratory of Macromolecular Science of Shaanxi ProvinceKey Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry & Chemical EngineeringShaanxi Normal University Xi'an Shaanxi 710062 China
| | - Quan‐Guo Zhai
- Key Laboratory of Macromolecular Science of Shaanxi ProvinceKey Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry & Chemical EngineeringShaanxi Normal University Xi'an Shaanxi 710062 China
| | - Shu‐Ni Li
- Key Laboratory of Macromolecular Science of Shaanxi ProvinceKey Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry & Chemical EngineeringShaanxi Normal University Xi'an Shaanxi 710062 China
| | - Yu‐Cheng Jiang
- Key Laboratory of Macromolecular Science of Shaanxi ProvinceKey Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry & Chemical EngineeringShaanxi Normal University Xi'an Shaanxi 710062 China
| | - Man‐Cheng Hu
- Key Laboratory of Macromolecular Science of Shaanxi ProvinceKey Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry & Chemical EngineeringShaanxi Normal University Xi'an Shaanxi 710062 China
| | - Xianhui Bu
- Department of Chemistry and BiochemistryCalifornia State University Long Beach California 90840 USA
| |
Collapse
|
27
|
Wu Y, Tian J, Liu S, Li B, Zhao J, Ma L, Li D, Lan Y, Bu X. Bi‐Microporous Metal–Organic Frameworks with Cubane [M
4
(OH)
4
] (M=Ni, Co) Clusters and Pore‐Space Partition for Electrocatalytic Methanol Oxidation Reaction. Angew Chem Int Ed Engl 2019; 58:12185-12189. [DOI: 10.1002/anie.201907136] [Citation(s) in RCA: 275] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Ya‐Pan Wu
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges University Yichang 443002 China
| | - Jun‐Wu Tian
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges University Yichang 443002 China
| | - Shan Liu
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges University Yichang 443002 China
| | - Bo Li
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges University Yichang 443002 China
| | - Jun Zhao
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges University Yichang 443002 China
| | - Lu‐Fang Ma
- College of Chemistry and Chemical EngineeringLuoyang Normal University Luoyang 471934 China
| | - Dong‐Sheng Li
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges University Yichang 443002 China
| | - Ya‐Qian Lan
- School of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Xianhui Bu
- Department of Chemistry and BiochemistryCalifornia State University, Long Beach 1250 Bellflower Boulevard Long Beach CA 90840 USA
| |
Collapse
|
28
|
Li Y, Wang Y, Xue Y, Li H, Zhai Q, Li S, Jiang Y, Hu M, Bu X. Ultramicroporous Building Units as a Path to Bi‐microporous Metal–Organic Frameworks with High Acetylene Storage and Separation Performance. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908378] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yong‐Peng Li
- Key Laboratory of Macromolecular Science of Shaanxi ProvinceKey Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry & Chemical EngineeringShaanxi Normal University Xi'an Shaanxi 710062 China
| | - Ying Wang
- Key Laboratory of Macromolecular Science of Shaanxi ProvinceKey Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry & Chemical EngineeringShaanxi Normal University Xi'an Shaanxi 710062 China
| | - Ying‐Ying Xue
- Key Laboratory of Macromolecular Science of Shaanxi ProvinceKey Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry & Chemical EngineeringShaanxi Normal University Xi'an Shaanxi 710062 China
| | - Hai‐Peng Li
- Key Laboratory of Macromolecular Science of Shaanxi ProvinceKey Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry & Chemical EngineeringShaanxi Normal University Xi'an Shaanxi 710062 China
| | - Quan‐Guo Zhai
- Key Laboratory of Macromolecular Science of Shaanxi ProvinceKey Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry & Chemical EngineeringShaanxi Normal University Xi'an Shaanxi 710062 China
| | - Shu‐Ni Li
- Key Laboratory of Macromolecular Science of Shaanxi ProvinceKey Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry & Chemical EngineeringShaanxi Normal University Xi'an Shaanxi 710062 China
| | - Yu‐Cheng Jiang
- Key Laboratory of Macromolecular Science of Shaanxi ProvinceKey Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry & Chemical EngineeringShaanxi Normal University Xi'an Shaanxi 710062 China
| | - Man‐Cheng Hu
- Key Laboratory of Macromolecular Science of Shaanxi ProvinceKey Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry & Chemical EngineeringShaanxi Normal University Xi'an Shaanxi 710062 China
| | - Xianhui Bu
- Department of Chemistry and BiochemistryCalifornia State University Long Beach California 90840 USA
| |
Collapse
|
29
|
Wu Y, Tian J, Liu S, Li B, Zhao J, Ma L, Li D, Lan Y, Bu X. Bi‐Microporous Metal–Organic Frameworks with Cubane [M
4
(OH)
4
] (M=Ni, Co) Clusters and Pore‐Space Partition for Electrocatalytic Methanol Oxidation Reaction. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907136] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ya‐Pan Wu
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges University Yichang 443002 China
| | - Jun‐Wu Tian
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges University Yichang 443002 China
| | - Shan Liu
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges University Yichang 443002 China
| | - Bo Li
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges University Yichang 443002 China
| | - Jun Zhao
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges University Yichang 443002 China
| | - Lu‐Fang Ma
- College of Chemistry and Chemical EngineeringLuoyang Normal University Luoyang 471934 China
| | - Dong‐Sheng Li
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges University Yichang 443002 China
| | - Ya‐Qian Lan
- School of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Xianhui Bu
- Department of Chemistry and BiochemistryCalifornia State University, Long Beach 1250 Bellflower Boulevard Long Beach CA 90840 USA
| |
Collapse
|
30
|
Wei JH, Yi JW, Han ML, Li B, Liu S, Wu YP, Ma LF, Li DS. A Water-Stable Terbium(III)-Organic Framework as a Chemosensor for Inorganic Ions, Nitro-Containing Compounds and Antibiotics in Aqueous Solutions. Chem Asian J 2019; 14:3694-3701. [PMID: 31347761 DOI: 10.1002/asia.201900706] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/19/2019] [Indexed: 12/22/2022]
Abstract
Effective detection of organic/inorganic pollutants, such as antibiotics, nitro-compounds, excessive Fe3+ and MnO4 - , is crucial for human health and environmental protection. Here, a new terbium(III)-organic framework, namely [Tb(TATAB)(H2 O)]⋅2H2 O (Tb-MOF, H3 TATAB=4,4',4''-s-triazine-1,3,5-triyltri-m-aminobenzoic acid), was assembled and characterized. The Tb-MOF exhibits a water-stable 3D bnn framework. Due to the existence of competitive absorption, Tb-MOF has a high selectivity for detecting Fe3+ , MnO4 - , 4-nirophenol and nitroimidazole (ronidazole, metronidazole, dimetridazole, ornidazole) in aqueous through luminescent quenching. The results suggest that Tb-MOF is a simple and reliable reagent with multiple sensor responses in practical applications. To the best of our knowledge, this work represents the first TbIII -based MOF as an efficient fluorescent sensor for detecting metal ions, inorganic anions, nitro-compounds, and antibiotics simultaneously.
Collapse
Affiliation(s)
- Jun-Hua Wei
- College of Materials & Chemical Engineering, Collaborative Innovation Centre for Microgrid of New Energy of Hubei Province, China Three Gorges University, Yichang, 443002, P. R. China
| | - Jing-Wei Yi
- College of Materials & Chemical Engineering, Collaborative Innovation Centre for Microgrid of New Energy of Hubei Province, China Three Gorges University, Yichang, 443002, P. R. China
| | - Min-Le Han
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Bo Li
- College of Materials & Chemical Engineering, Collaborative Innovation Centre for Microgrid of New Energy of Hubei Province, China Three Gorges University, Yichang, 443002, P. R. China
| | - Shan Liu
- College of Materials & Chemical Engineering, Collaborative Innovation Centre for Microgrid of New Energy of Hubei Province, China Three Gorges University, Yichang, 443002, P. R. China
| | - Ya-Pan Wu
- College of Materials & Chemical Engineering, Collaborative Innovation Centre for Microgrid of New Energy of Hubei Province, China Three Gorges University, Yichang, 443002, P. R. China
| | - Lu-Fang Ma
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Dong-Sheng Li
- College of Materials & Chemical Engineering, Collaborative Innovation Centre for Microgrid of New Energy of Hubei Province, China Three Gorges University, Yichang, 443002, P. R. China
| |
Collapse
|