1
|
Fujii T, Wang Q, Zhu J. Arylative Ring Expansion of 3-Vinylazetidin-3-Ols and 3-Vinyloxetan-3-Ols to Dihydrofurans by Dual Palladium and Acid Catalysis. Angew Chem Int Ed Engl 2024; 63:e202403484. [PMID: 38525663 DOI: 10.1002/anie.202403484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 03/26/2024]
Abstract
In contrast to the well-studied 1-vinylcyclobutanols, the reactivity of 3-vinylazetidin-3-ols 1 and 3-vinyloxetan-3-ols 2 under transition metal catalysis remains largely unexplored. We report herein their unique reactivity under dual palladium and acid catalysis. In the presence of a catalytic amount of Pd(OAc)2(PPh3)2, AgTFA and triflic acid, the reaction of 1 or 2 with aryl iodides affords 2,3,4-trisubstituted dihydrofurans, which are valuable heterocycles in organic synthesis. Mechanistic studies reveal that this arylative ring-expansion reaction proceeds via a domino process involving Heck arylation of alkene, acid-catalyzed transposition of allylic alcohol and ring opening of the azetidine/oxetane by an internal hydroxyl group.
Collapse
Affiliation(s)
- Takuji Fujii
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH, 5304, 1015, Lausanne, Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH, 5304, 1015, Lausanne, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH, 5304, 1015, Lausanne, Switzerland
| |
Collapse
|
2
|
Zhou W, Zhou T, Tian M, Jiang Y, Yang J, Lei S, Wang Q, Zhang C, Qiu H, He L, Wang Z, Deng J, Zhang M. Asymmetric Total Syntheses of Schizozygane Alkaloids. J Am Chem Soc 2021; 143:19975-19982. [PMID: 34797070 DOI: 10.1021/jacs.1c10279] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The concise, collective, and asymmetric total syntheses of four schizozygane alkaloids, which feature a "Pan lid"-like hexacyclic core scaffold bearing up to six continuous stereocenters, including two quaternary ones, are described. A new method of dearomative cyclization of cyclopropanol onto the indole ring at C2 was developed to build the ABCF ring system of the schizozygane core with a ketone group. Another key skeleton-building reaction, the Heck/carbonylative lactamization cascade, ensured the rapid assembly of the hexacyclic schizozygane core and concurrent installation of an alkene group. By strategic use of these two reactions and through late-stage diversifications of the functionalized schizozygane core, the first and asymmetric total syntheses of (+)-schizozygine, (+)-3-oxo-14α,15α-epoxyschizozygine, and (+)-α-schizozygol and the total synthesis of (+)-strempeliopine have been accomplished in 11-12 steps from tryptamines.
Collapse
Affiliation(s)
- Wenqiang Zhou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Tao Zhou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Mengxing Tian
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yan Jiang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Jiaojiao Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Shuai Lei
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Qi Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Chongzhou Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Hanyue Qiu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Ling He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Zhen Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Jun Deng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Min Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
3
|
Arribas A, Calvelo M, Fernández DF, Rodrigues CAB, Mascareñas JL, López F. Highly Enantioselective Iridium(I)‐Catalyzed Hydrocarbonation of Alkenes: A Versatile Approach to Heterocyclic Systems Bearing Quaternary Stereocenters. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Andrés Arribas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Martín Calvelo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - David F. Fernández
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Catarina A. B. Rodrigues
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - José L. Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Fernando López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
- Misión Biológica de Galicia Consejo Superior de Investigaciones Científicas (CSIC) 36080 Pontevedra Spain
| |
Collapse
|
4
|
Arribas A, Calvelo M, Fernández DF, Rodrigues CAB, Mascareñas JL, López F. Highly Enantioselective Iridium(I)-Catalyzed Hydrocarbonation of Alkenes: A Versatile Approach to Heterocyclic Systems Bearing Quaternary Stereocenters. Angew Chem Int Ed Engl 2021; 60:19297-19305. [PMID: 34137152 PMCID: PMC8456945 DOI: 10.1002/anie.202105776] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/10/2021] [Indexed: 12/29/2022]
Abstract
We report a versatile, highly enantioselective intramolecular hydrocarbonation reaction that provides a direct access to heteropolycyclic systems bearing chiral quaternary carbon stereocenters. The method, which relies on an iridium(I)/bisphosphine chiral catalyst, is particularly efficient for the synthesis of five-, six- and seven-membered fused indole and pyrrole products, bearing one and two stereocenters, with enantiomeric excesses of up to >99 %. DFT computational studies allowed to obtain a detailed mechanistic profile and identify a cluster of weak non-covalent interactions as key factors to control the enantioselectivity.
Collapse
Affiliation(s)
- Andrés Arribas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Martín Calvelo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - David F. Fernández
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Catarina A. B. Rodrigues
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - José L. Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Fernando López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
- Misión Biológica de GaliciaConsejo Superior de Investigaciones Científicas (CSIC)36080PontevedraSpain
| |
Collapse
|
5
|
Reimann CE, Ngamnithiporn A, Hayashida K, Saito D, Korch KM, Stoltz BM. The Enantioselective Synthesis of Eburnamonine, Eucophylline, and 16′‐
epi
‐Leucophyllidine. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Christopher E. Reimann
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering Division of Chemistry and Chemical Engineering 1200 E. California Blvd, MC 101-20 Pasadena CA 91125 USA
| | - Aurapat Ngamnithiporn
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering Division of Chemistry and Chemical Engineering 1200 E. California Blvd, MC 101-20 Pasadena CA 91125 USA
- Laboratory of Medicinal Chemistry Chulabhorn Research Institute 54 Kamphaeng Phet 6 Road Bangkok 10210 Thailand
| | - Kohei Hayashida
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering Division of Chemistry and Chemical Engineering 1200 E. California Blvd, MC 101-20 Pasadena CA 91125 USA
- Discovery Research Laboratories Nippon Chemiphar Co., Ltd. 1–22 Hikokawado Misato Saitama 341-005 Japan
| | - Daisuke Saito
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering Division of Chemistry and Chemical Engineering 1200 E. California Blvd, MC 101-20 Pasadena CA 91125 USA
- Discovery Research Laboratories Nippon Chemiphar Co., Ltd. 1–22 Hikokawado Misato Saitama 341-005 Japan
| | - Katerina M. Korch
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering Division of Chemistry and Chemical Engineering 1200 E. California Blvd, MC 101-20 Pasadena CA 91125 USA
| | - Brian M. Stoltz
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering Division of Chemistry and Chemical Engineering 1200 E. California Blvd, MC 101-20 Pasadena CA 91125 USA
| |
Collapse
|
6
|
Reimann CE, Ngamnithiporn A, Hayashida K, Saito D, Korch KM, Stoltz BM. The Enantioselective Synthesis of Eburnamonine, Eucophylline, and 16'-epi-Leucophyllidine. Angew Chem Int Ed Engl 2021; 60:17957-17962. [PMID: 34036708 PMCID: PMC8338904 DOI: 10.1002/anie.202106184] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Indexed: 11/08/2022]
Abstract
A synthetic approach to the heterodimeric bisindole alkaloid leucophyllidine is disclosed herein. An enantioenriched lactam building block, synthesized through palladium-catalyzed asymmetric allylic alkylation, served as the precursor to both hemispheres. The eburnamonine-derived fragment was synthesized through a Bischler-Napieralski/hydrogenation approach, while the eucophylline-derived fragment was synthesized by Friedländer quinoline synthesis and two sequential C-H functionalization steps. A convergent Stille coupling and phenol-directed hydrogenation united the two monomeric fragments to afford 16'-epi-leucophyllidine in 21 steps from commercial material.
Collapse
Affiliation(s)
- Christopher E. Reimann
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, 1200 E. California Blvd. MC 101-20, Pasadena, CA 91125 (USA)
| | - Aurapat Ngamnithiporn
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, 1200 E. California Blvd. MC 101-20, Pasadena, CA 91125 (USA)
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Bangkok, 10210, Thailand
| | - Kohei Hayashida
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, 1200 E. California Blvd. MC 101-20, Pasadena, CA 91125 (USA)
- Discovery Research Laboratories, Nippon Chemiphar Co., Ltd. 1-22 Hikokawado, Misato, Saitama 341-005, Japan
| | - Daisuke Saito
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, 1200 E. California Blvd. MC 101-20, Pasadena, CA 91125 (USA)
- Discovery Research Laboratories, Nippon Chemiphar Co., Ltd. 1-22 Hikokawado, Misato, Saitama 341-005, Japan
| | - Katerina M. Korch
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, 1200 E. California Blvd. MC 101-20, Pasadena, CA 91125 (USA)
| | - Brian M. Stoltz
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, 1200 E. California Blvd. MC 101-20, Pasadena, CA 91125 (USA)
| |
Collapse
|
7
|
He Y, Cao J, Wu H, Wang Q, Zhu J. Catalytic Enantioselective Aminopalladation–Heck Cascade. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yu‐Ping He
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN BCH 5304, 1015 Lausanne Switzerland
| | - Jian Cao
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN BCH 5304, 1015 Lausanne Switzerland
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Hangzhou Normal University Hangzhou 311121 P. R. China
| | - Hua Wu
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN BCH 5304, 1015 Lausanne Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN BCH 5304, 1015 Lausanne Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN BCH 5304, 1015 Lausanne Switzerland
| |
Collapse
|
8
|
He Y, Cao J, Wu H, Wang Q, Zhu J. Catalytic Enantioselective Aminopalladation–Heck Cascade. Angew Chem Int Ed Engl 2021; 60:7093-7097. [DOI: 10.1002/anie.202016001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/26/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Yu‐Ping He
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN BCH 5304, 1015 Lausanne Switzerland
| | - Jian Cao
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN BCH 5304, 1015 Lausanne Switzerland
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Hangzhou Normal University Hangzhou 311121 P. R. China
| | - Hua Wu
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN BCH 5304, 1015 Lausanne Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN BCH 5304, 1015 Lausanne Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN BCH 5304, 1015 Lausanne Switzerland
| |
Collapse
|
9
|
Kurimoto M, Nakajima D, Nishiyama Y, Yokoshima S. Semipinacol Rearrangement Induced by Cleavage of Dibromocyclopropane. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Michitaka Kurimoto
- Graduate School of Pharmaceutical Sciences Nagoya University Furo‐cho, Chikusa‐ku 464‐8601 Nagoya Japan
| | - Daisuke Nakajima
- Graduate School of Pharmaceutical Sciences Nagoya University Furo‐cho, Chikusa‐ku 464‐8601 Nagoya Japan
| | - Yoshitake Nishiyama
- Graduate School of Pharmaceutical Sciences Nagoya University Furo‐cho, Chikusa‐ku 464‐8601 Nagoya Japan
| | - Satoshi Yokoshima
- Graduate School of Pharmaceutical Sciences Nagoya University Furo‐cho, Chikusa‐ku 464‐8601 Nagoya Japan
| |
Collapse
|
10
|
Delayre B, Piemontesi C, Wang Q, Zhu J. TiCl
3
‐Mediated Synthesis of 2,3,3‐Trisubstituted Indolenines: Total Synthesis of (+)‐1,2‐Dehydroaspidospermidine, (+)‐Condyfoline, and (−)‐Tubifoline. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Bastien Delayre
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| | - Cyril Piemontesi
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| |
Collapse
|
11
|
Delayre B, Piemontesi C, Wang Q, Zhu J. TiCl
3
‐Mediated Synthesis of 2,3,3‐Trisubstituted Indolenines: Total Synthesis of (+)‐1,2‐Dehydroaspidospermidine, (+)‐Condyfoline, and (−)‐Tubifoline. Angew Chem Int Ed Engl 2020; 59:13990-13997. [DOI: 10.1002/anie.202005380] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Bastien Delayre
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| | - Cyril Piemontesi
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| |
Collapse
|
12
|
Li P, Sheng R, Zhou Z, Hu G, Zhang X. Synthesis of N
-Fused Seven-Membered Indoline-3-ones via
a Palladium-Catalyzed One-Pot Insertion Reaction from 2-Alkynyl Arylazides and Cyclic β
-Diketones. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ping Li
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals; College of Chemical Engineering; Nanjing Forestry University; 210037 Nanjing China
| | - Rong Sheng
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals; College of Chemical Engineering; Nanjing Forestry University; 210037 Nanjing China
| | - Zhiqiang Zhou
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals; College of Chemical Engineering; Nanjing Forestry University; 210037 Nanjing China
| | - Guiwen Hu
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals; College of Chemical Engineering; Nanjing Forestry University; 210037 Nanjing China
| | - Xiaoxiang Zhang
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals; College of Chemical Engineering; Nanjing Forestry University; 210037 Nanjing China
| |
Collapse
|
13
|
Dagoneau D, Wang Q, Zhu J. Towards the Sarpagine-Ajmaline-Macroline Family of Indole Alkaloids: Enantioselective Synthesis of an N-Demethyl Alstolactone Diastereomer. Chemistry 2020; 26:4866-4873. [PMID: 32065430 DOI: 10.1002/chem.202000415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/14/2020] [Indexed: 12/19/2022]
Abstract
the strategy involving the use of functionalized tetrahydro-6H-cycloocta[b]indol-6-one is reported as a key intermediate for synthesis of members of the sarpagine-ajmaline-macroline family of monoterpene indole alkaloids. The desired tricycle was synthesized through the following key steps: 1) Evans' syn-selective aldolization; 2) Liebeskind-Srogl cross-coupling using the phenylthiol ester of 3-chloropropanoic acid as a surrogate of acrylic thioester for the synthesis of 2,3-disubstituted indoles; and 3) ring-closing metathesis (RCM) for the formation of the eight-membered ring. An N-allylation followed by intramolecular 1,4-addition was planned for synthesis of the vobasine class of natural products. However, attempted cyclizations under a diverse set of conditions involving anionic, radical, and organopalladium/organonickel species failed to produce the bridged ring system. On the other hand, esterification of the pendant primary alcohol function with acetoacetic acid, followed by intramolecular Michael addition, afforded the desired tetracycle with excellent diastereoselectivity. Subsequent functional group manipulation and transannular cyclization of the amino alcohol afforded the N(1)-demethyl-3,5-diepi-alstolactone. We believe that the same synthetic route would afford the alstolactone should the amino alcohol with appropriate stereochemistry be used as the starting material.
Collapse
Affiliation(s)
- Dylan Dagoneau
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015, Lausanne, Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015, Lausanne, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015, Lausanne, Switzerland
| |
Collapse
|
14
|
Xie Y, Chen Z, Luo H, Shao H, Tu Y, Bao X, Cao R, Zhang S, Tian J. Lewis Base/Brønsted Acid Co‐catalyzed Enantioselective Sulfenylation/Semipinacol Rearrangement of Di‐ and Trisubstituted Allylic Alcohols. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yu‐Yang Xie
- School of Chemistry and Chemical Engineering and Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Zhi‐Min Chen
- School of Chemistry and Chemical Engineering and Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Hui‐Yun Luo
- School of Chemistry and Chemical Engineering and Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Hui Shao
- School of Chemistry and Chemical Engineering and Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Yong‐Qiang Tu
- School of Chemistry and Chemical Engineering and Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000 P. R. China
| | - Xiaoguang Bao
- College of Chemistry Chemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Industrial Park Suzhou Jiangsu 215123 P. R. China
| | - Ren‐Fei Cao
- School of Chemistry and Chemical Engineering and Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Shu‐Yu Zhang
- School of Chemistry and Chemical Engineering and Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Jin‐Miao Tian
- School of Chemistry and Chemical Engineering and Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| |
Collapse
|
15
|
Xie YY, Chen ZM, Luo HY, Shao H, Tu YQ, Bao X, Cao RF, Zhang SY, Tian JM. Lewis Base/Brønsted Acid Co-catalyzed Enantioselective Sulfenylation/Semipinacol Rearrangement of Di- and Trisubstituted Allylic Alcohols. Angew Chem Int Ed Engl 2019; 58:12491-12496. [PMID: 31293063 DOI: 10.1002/anie.201907115] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Indexed: 12/29/2022]
Abstract
An enantioselective sulfenylation/semipinacol rearrangement of 1,1-disubstituted and trisubstituted allylic alcohols was accomplished with a chiral Lewis base and a chiral Brønsted acid as cocatalysts, generating various β-arylthio ketones bearing an all-carbon quaternary center in moderate to excellent yields and excellent enantioselectivities. These chiral arylthio ketone products are common intermediates with many applications, for example, in the design of new chiral catalysts/ligands and the total synthesis of natural products. Computational studies (DFT calculations) were carried out to explain the enantioselectivity and the role of the chiral Brønsted acid. Additionally, the synthetic utility of this method was exemplified by an enantioselective total synthesis of (-)-herbertene and a one-pot synthesis of a chiral sulfoxide and sulfone.
Collapse
Affiliation(s)
- Yu-Yang Xie
- School of Chemistry and Chemical Engineering and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Zhi-Min Chen
- School of Chemistry and Chemical Engineering and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Hui-Yun Luo
- School of Chemistry and Chemical Engineering and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Hui Shao
- School of Chemistry and Chemical Engineering and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Yong-Qiang Tu
- School of Chemistry and Chemical Engineering and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China.,State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Xiaoguang Bao
- College of Chemistry Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China
| | - Ren-Fei Cao
- School of Chemistry and Chemical Engineering and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Shu-Yu Zhang
- School of Chemistry and Chemical Engineering and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Jin-Miao Tian
- School of Chemistry and Chemical Engineering and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|