1
|
Cui H, Vedder M, Zhang L, Jaeger K, Schwaneberg U, Davari MD. Polar Substitutions on the Surface of a Lipase Substantially Improve Tolerance in Organic Solvents. CHEMSUSCHEM 2022; 15:e202102551. [PMID: 35007408 PMCID: PMC9305861 DOI: 10.1002/cssc.202102551] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/10/2022] [Indexed: 06/09/2023]
Abstract
Biocatalysis in organic solvents (OSs) enables more efficient routes to the synthesis of various valuable chemicals. However, OSs often reduce enzymatic activity, which limits the use of enzymes in OSs. Herein, we report a comprehensive understanding of interactions between surface polar substitutions and DMSO by integrating molecular dynamics (MD) simulations of 45 variants from Bacillus subtilis lipase A (BSLA) and substitution landscape into a "BSLA-SSM" library. By systematically analyzing 39 structural-, solvation-, and interaction energy-based observables, we discovered that hydration shell maintenance, DMSO reduction, and decreased local flexibility simultaneously govern the stability of polar variants in OS. Moreover, the fingerprints of 1631 polar-related variants in three OSs demonstrated that substituting aromatic to polar amino acid(s) hold great potential to highly improve OSs resistance. Hence, surface polar engineering is a powerful strategy to generate OS-tolerant lipases and other enzymes, thereby adapting the catalyst to the desired reaction and process with OSs.
Collapse
Affiliation(s)
- Haiyang Cui
- Institute of BiotechnologyRWTH Aachen UniversityWorringerweg 3Aachen52074Germany
- DWI-Leibniz Institute for Interactive MaterialsForckenbeckstraße 50Aachen52074Germany
- University of Illinois at Urbana-Champaign Carl R. Woese Institute for Genomic Biology1206 West Gregory DriveUrbana, IL61801USA
| | - Markus Vedder
- Institute of BiotechnologyRWTH Aachen UniversityWorringerweg 3Aachen52074Germany
| | - Lingling Zhang
- Tianjin Institute of Industrial BiotechnologyChinese Academy of SciencesWest 7th Avenue 32, Tianjin Airport Economic AreaTianjin300308P. R. China
| | - Karl‐Erich Jaeger
- Institute of Molecular Enzyme TechnologyHeinrich Heine University DüsseldorfWilhelm Johnen StrasseJülich52426Germany
- Institute of Bio-and Geosciences IBG 1: BiotechnologyForschungszentrum Jülich GmbHWilhelm Johnen StrasseJülich52426Germany
| | - Ulrich Schwaneberg
- Institute of BiotechnologyRWTH Aachen UniversityWorringerweg 3Aachen52074Germany
- DWI-Leibniz Institute for Interactive MaterialsForckenbeckstraße 50Aachen52074Germany
| | - Mehdi D. Davari
- Department of Bioorganic ChemistryLeibniz Institute of Plant BiochemistryWeinberg 306120HalleGermany
| |
Collapse
|
2
|
Novaes LFT, Liu J, Shen Y, Lu L, Meinhardt JM, Lin S. Electrocatalysis as an enabling technology for organic synthesis. Chem Soc Rev 2021; 50:7941-8002. [PMID: 34060564 PMCID: PMC8294342 DOI: 10.1039/d1cs00223f] [Citation(s) in RCA: 446] [Impact Index Per Article: 111.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Electrochemistry has recently gained increased attention as a versatile strategy for achieving challenging transformations at the forefront of synthetic organic chemistry. Electrochemistry's unique ability to generate highly reactive radical and radical ion intermediates in a controlled fashion under mild conditions has inspired the development of a number of new electrochemical methodologies for the preparation of valuable chemical motifs. Particularly, recent developments in electrosynthesis have featured an increased use of redox-active electrocatalysts to further enhance control over the selective formation and downstream reactivity of these reactive intermediates. Furthermore, electrocatalytic mediators enable synthetic transformations to proceed in a manner that is mechanistically distinct from purely chemical methods, allowing for the subversion of kinetic and thermodynamic obstacles encountered in conventional organic synthesis. This review highlights key innovations within the past decade in the area of synthetic electrocatalysis, with emphasis on the mechanisms and catalyst design principles underpinning these advancements. A host of oxidative and reductive electrocatalytic methodologies are discussed and are grouped according to the classification of the synthetic transformation and the nature of the electrocatalyst.
Collapse
Affiliation(s)
- Luiz F T Novaes
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | | | |
Collapse
|
3
|
Cui H, Eltoukhy L, Zhang L, Markel U, Jaeger K, Davari MD, Schwaneberg U. Less Unfavorable Salt Bridges on the Enzyme Surface Result in More Organic Cosolvent Resistance. Angew Chem Int Ed Engl 2021; 60:11448-11456. [PMID: 33687787 PMCID: PMC8252522 DOI: 10.1002/anie.202101642] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Indexed: 11/06/2022]
Abstract
Biocatalysis for the synthesis of fine chemicals is highly attractive but usually requires organic (co-)solvents (OSs). However, native enzymes often have low activity and resistance in OSs and at elevated temperatures. Herein, we report a smart salt bridge design strategy for simultaneously improving OS resistance and thermostability of the model enzyme, Bacillus subtilits Lipase A (BSLA). We combined comprehensive experimental studies of 3450 BSLA variants and molecular dynamics simulations of 36 systems. Iterative recombination of four beneficial substitutions yielded superior resistant variants with up to 7.6-fold (D64K/D144K) improved resistance toward three OSs while exhibiting significant thermostability (thermal resistance up to 137-fold, and half-life up to 3.3-fold). Molecular dynamics simulations revealed that locally refined flexibility and strengthened hydration jointly govern the highly increased resistance in OSs and at 50-100 °C. The salt bridge redesign provides protein engineers with a powerful and likely general approach to design OSs- and/or thermal-resistant lipases and other α/β-hydrolases.
Collapse
Affiliation(s)
- Haiyang Cui
- Institute of BiotechnologyRWTH Aachen UniversityWorringer Weg 352074AachenGermany
- DWI Leibniz-Institute for Interactive MaterialsForckenbeckstrasse 5052074AachenGermany
| | - Lobna Eltoukhy
- Institute of BiotechnologyRWTH Aachen UniversityWorringer Weg 352074AachenGermany
| | - Lingling Zhang
- Institute of BiotechnologyRWTH Aachen UniversityWorringer Weg 352074AachenGermany
- Tianjin Institute of Industrial BiotechnologyChinese Academy of SciencesWest 7th Avenue 32, Tianjin Airport Economic Area300308TianjinChina
| | - Ulrich Markel
- Institute of BiotechnologyRWTH Aachen UniversityWorringer Weg 352074AachenGermany
| | - Karl‐Erich Jaeger
- Institute of Molecular Enzyme TechnologyHeinrich Heine University DüsseldorfWilhelm Johnen Strasse52426JülichGermany
- Institute of Bio-and Geosciences IBG 1: BiotechnologyForschungszentrum Jülich GmbHWilhelm Johnen Strasse52426JülichGermany
| | - Mehdi D. Davari
- Institute of BiotechnologyRWTH Aachen UniversityWorringer Weg 352074AachenGermany
| | - Ulrich Schwaneberg
- Institute of BiotechnologyRWTH Aachen UniversityWorringer Weg 352074AachenGermany
- DWI Leibniz-Institute for Interactive MaterialsForckenbeckstrasse 5052074AachenGermany
| |
Collapse
|
4
|
Cui H, Eltoukhy L, Zhang L, Markel U, Jaeger K, Davari MD, Schwaneberg U. Less Unfavorable Salt Bridges on the Enzyme Surface Result in More Organic Cosolvent Resistance. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Haiyang Cui
- Institute of Biotechnology RWTH Aachen University Worringer Weg 3 52074 Aachen Germany
- DWI Leibniz-Institute for Interactive Materials Forckenbeckstrasse 50 52074 Aachen Germany
| | - Lobna Eltoukhy
- Institute of Biotechnology RWTH Aachen University Worringer Weg 3 52074 Aachen Germany
| | - Lingling Zhang
- Institute of Biotechnology RWTH Aachen University Worringer Weg 3 52074 Aachen Germany
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences West 7th Avenue 32, Tianjin Airport Economic Area 300308 Tianjin China
| | - Ulrich Markel
- Institute of Biotechnology RWTH Aachen University Worringer Weg 3 52074 Aachen Germany
| | - Karl‐Erich Jaeger
- Institute of Molecular Enzyme Technology Heinrich Heine University Düsseldorf Wilhelm Johnen Strasse 52426 Jülich Germany
- Institute of Bio-and Geosciences IBG 1: Biotechnology Forschungszentrum Jülich GmbH Wilhelm Johnen Strasse 52426 Jülich Germany
| | - Mehdi D. Davari
- Institute of Biotechnology RWTH Aachen University Worringer Weg 3 52074 Aachen Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology RWTH Aachen University Worringer Weg 3 52074 Aachen Germany
- DWI Leibniz-Institute for Interactive Materials Forckenbeckstrasse 50 52074 Aachen Germany
| |
Collapse
|
5
|
Chen H, Simoska O, Lim K, Grattieri M, Yuan M, Dong F, Lee YS, Beaver K, Weliwatte S, Gaffney EM, Minteer SD. Fundamentals, Applications, and Future Directions of Bioelectrocatalysis. Chem Rev 2020; 120:12903-12993. [DOI: 10.1021/acs.chemrev.0c00472] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hui Chen
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Olja Simoska
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Koun Lim
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Matteo Grattieri
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Mengwei Yuan
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Fangyuan Dong
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Yoo Seok Lee
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Kevin Beaver
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Samali Weliwatte
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Erin M. Gaffney
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
6
|
Gräff M, Buchholz PCF, Le Roes‐Hill M, Pleiss J. Multicopper oxidases: modular structure, sequence space, and evolutionary relationships. Proteins 2020; 88:1329-1339. [DOI: 10.1002/prot.25952] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/22/2020] [Accepted: 05/16/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Maike Gräff
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart Stuttgart Germany
| | - Patrick C. F. Buchholz
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart Stuttgart Germany
| | - Marilize Le Roes‐Hill
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology Bellville South Africa
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart Stuttgart Germany
| |
Collapse
|
7
|
Abstract
There is a high number of well characterized, commercially available laccases with different redox potentials and low substrate specificity, which in turn makes them attractive for a vast array of biotechnological applications. Laccases operate as batteries, storing electrons from individual substrate oxidation reactions to reduce molecular oxygen, releasing water as the only by-product. Due to society’s increasing environmental awareness and the global intensification of bio-based economies, the biotechnological industry is also expanding. Enzymes such as laccases are seen as a better alternative for use in the wood, paper, textile, and food industries, and they are being applied as biocatalysts, biosensors, and biofuel cells. Almost 140 years from the first description of laccase, industrial implementations of these enzymes still remain scarce in comparison to their potential, which is mostly due to high production costs and the limited control of the enzymatic reaction side product(s). This review summarizes the laccase applications in the last decade, focusing on the published patents during this period.
Collapse
|