1
|
Cheng B, Wang C, Hao Y, Wang J, Xia X, Zhang H, He R, Zhang S, Dai P, Chen X. Facile Synthesis of Clickable Unnatural Sugars in the Unprotected and 1,6-Di-O-Acylated Forms for Metabolic Glycan Labeling. Chemistry 2023; 29:e202203054. [PMID: 36422057 DOI: 10.1002/chem.202203054] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/12/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022]
Abstract
Clickable unnatural sugars have been widely used in studying glycosylation in living systems via the metabolic glycan labelling (MGL) strategy. Partial protection of unnatural sugars by 1,6-di-O-acylation increases the labelling efficiency while avoiding the non-specific S-glyco-modification. Herein, we report the facile synthesis of a series of clickable unnatural sugars in both the unprotected and 1,6-di-O-acylated forms at the ten-gram scale. By evaluation of the labelling specificity, efficiency, and biocompatibility of various 1,6-di-O-acylated sugars for MGL in cell lines and living mice, we demonstrate that 1,6-di-O-propionylated unnatural sugars are optimal chemical reporters for glycan labelling. The synthetic routes developed in this work should facilitate the widespread use of MGL with no artificial S-glyco-modification for investigating the functional roles of glycans.
Collapse
Affiliation(s)
- Bo Cheng
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| | - Chunting Wang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| | - Yi Hao
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| | - Jiankun Wang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| | - Xiaoqian Xia
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| | - Hao Zhang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| | - Rundong He
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| | - Shaoran Zhang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| | - Peng Dai
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| | - Xing Chen
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
3
|
Chinoy ZS, Moremen KW, Friscourt F. A Clickable Bioorthogonal Sydnone-Aglycone for the Facile Preparation of a Core 1 O-Glycan-Array. European J Org Chem 2022; 2022:e202200271. [PMID: 36035814 PMCID: PMC9401066 DOI: 10.1002/ejoc.202200271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/13/2022] [Indexed: 11/12/2022]
Abstract
Protein-O-glycosylation has been shown to be essential for many biological processes. However, determining the exact relationship between O-glycan structures and their biological activity remains challenging. Here we report that, unlike azides, sydnones can be incorporated as an aglycon into core 1 O-glycans early-on in their synthesis since it is compatible with carbohydrate chemistry and enzymatic glycosylations, allowing us to generate a small library of sydnone-containing core 1 O-glycans by chemoenzymatic synthesis. The sydnone-aglycon was then employed for the facile preparation of an O-glycan array, via bioorthogonal strain-promoted sydnone-alkyne cycloaddition click reaction, and in turn was utilized for the high-throughput screening of O-glycan-lectin interactions. This sydnone-aglycon, particularly adapted for O-glycomics, is a valuable chemical tool that complements the limited technologies available for investigating O-glycan structure-activity relationships.
Collapse
Affiliation(s)
- Zoeisha S. Chinoy
- Institut Européen de Chimie et BiologieUniversité de Bordeaux2 rue Robert Escarpit33607PessacFrance
- Institut des Sciences MoléculairesCNRS UMR525533405TalenceFrance
| | - Kelley W. Moremen
- Department of Biochemistry and Molecular BiologyUniversity of GeorgiaAthensGA 30602USA
- Complex Carbohydrate Research CenterUniversity of GeorgiaAthensGA 30602USA
| | - Frédéric Friscourt
- Institut Européen de Chimie et BiologieUniversité de Bordeaux2 rue Robert Escarpit33607PessacFrance
- Institut des Sciences MoléculairesCNRS UMR525533405TalenceFrance
| |
Collapse
|
4
|
Krell K, Pfeuffer B, Rönicke F, Chinoy ZS, Favre C, Friscourt F, Wagenknecht H. Fast and Efficient Postsynthetic DNA Labeling in Cells by Means of Strain-Promoted Sydnone-Alkyne Cycloadditions. Chemistry 2021; 27:16093-16097. [PMID: 34633713 PMCID: PMC9297951 DOI: 10.1002/chem.202103026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Indexed: 12/16/2022]
Abstract
Sydnones are highly stable mesoionic 1,3-dipoles that react with cyclooctynes through strain-promoted sydnone-alkyne cycloaddition (SPSAC). Although sydnones have been shown to be valuable bioorthogonal chemical reporters for the labeling of proteins and complex glycans, nucleic acids have not yet been tagged by SPSAC. Evaluation of SPSAC kinetics with model substrates showed fast reactions with cyclooctyne probes (up to k=0.59 M-1 s-1 ), and two different sydnones were effectively incorporated into both 2'-deoxyuridines at position 5, and 7-deaza-2'-deoxyadenosines at position 7. These modified nucleosides were synthetically incorporated into single-stranded DNAs, which were successfully postsynthetically labeled with cyclooctyne probes both in vitro and in cells. These results show that sydnones are versatile bioorthogonal tags and have the premise to become essential tools for tracking DNA and potentially RNA in living cells.
Collapse
Affiliation(s)
- Katja Krell
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| | - Bastian Pfeuffer
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| | - Franziska Rönicke
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| | - Zoeisha S. Chinoy
- Institut Européen de Chimie et Biologie and ISM CNRS UMR5255Université de Bordeaux2 Rue Robert Escarpit33607PessacFrance
| | - Camille Favre
- Institut Européen de Chimie et Biologie and ISM CNRS UMR5255Université de Bordeaux2 Rue Robert Escarpit33607PessacFrance
| | - Frédéric Friscourt
- Institut Européen de Chimie et Biologie and ISM CNRS UMR5255Université de Bordeaux2 Rue Robert Escarpit33607PessacFrance
| | - Hans‐Achim Wagenknecht
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| |
Collapse
|
5
|
Mummel S, Lederle F, Hübner EG, Namyslo JC, Nieger M, Schmidt A. Sydnone Methides-A Forgotten Class of Mesoionic Compounds for the Generation of Anionic N-Heterocyclic Carbenes. Angew Chem Int Ed Engl 2021; 60:18882-18887. [PMID: 34153173 PMCID: PMC8456854 DOI: 10.1002/anie.202107495] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Indexed: 12/25/2022]
Abstract
Sydnone methides are described from which only one single example has been mentioned in the literature so far. Their deprotonation gave anions which can be formulated as π-electron rich anionic N-heterocyclic carbenes. Sulfur and selenium adducts were stabilized as their methyl ethers, and mercury, gold as well as rhodium complexes of the sydnone methide carbenes were prepared. Sydnone methide anions also undergo C-C coupling reactions with 1-fluoro-4-iodobenzene under Pd(PPh3 )4 and CuBr catalysis. 77 Se NMR resonance frequencies and 1 JC4-Se as well as 1 JC4-H coupling constants have been determined to gain knowledge about the electronic properties of the anionic N-heterocyclic carbenes. The carbene carbon atom of the sydnone methide anion 3 j resonates at δ=155.2 ppm in 13 C NMR spectroscopy at -40 °C which is extremely shifted upfield in comparison to classical N-heterocyclic carbenes.
Collapse
Affiliation(s)
- Sebastian Mummel
- Clausthal University of TechnologyInstitute of Organic ChemistryLeibnizstrasse 6D-38678Clausthal-ZellerfeldGermany
| | - Felix Lederle
- Clausthal University of TechnologyInstitute of Organic ChemistryLeibnizstrasse 6D-38678Clausthal-ZellerfeldGermany
- Fraunhofer Heinrich Hertz Institute HHIFiber Optical Sensor SystemsAm Stollen 19HD-38640GoslarGermany
| | - Eike G. Hübner
- Clausthal University of TechnologyInstitute of Organic ChemistryLeibnizstrasse 6D-38678Clausthal-ZellerfeldGermany
- Fraunhofer Heinrich Hertz Institute HHIFiber Optical Sensor SystemsAm Stollen 19HD-38640GoslarGermany
| | - Jan C. Namyslo
- Clausthal University of TechnologyInstitute of Organic ChemistryLeibnizstrasse 6D-38678Clausthal-ZellerfeldGermany
| | - Martin Nieger
- University of HelsinkiDepartment of ChemistryP.O. Box 55FIN-00014HelsinkiFinland
| | - Andreas Schmidt
- Clausthal University of TechnologyInstitute of Organic ChemistryLeibnizstrasse 6D-38678Clausthal-ZellerfeldGermany
| |
Collapse
|
6
|
Mummel S, Lederle F, Hübner EG, Namyslo JC, Nieger M, Schmidt A. Sydnonmethide – fast vergessene Mesoionen als Vorläufermoleküle von anionischen N‐heterocyclischen Carbenen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Sebastian Mummel
- Technische Universität Clausthal Institut für Organische Chemie Leibnizstrasse 6 38678 Clausthal-Zellerfeld Deutschland
| | - Felix Lederle
- Technische Universität Clausthal Institut für Organische Chemie Leibnizstrasse 6 38678 Clausthal-Zellerfeld Deutschland
- Fraunhofer Heinrich-Hertz-Institut HHI Faseroptische Sensorsysteme Am Stollen 19H 38640 Goslar Deutschland
| | - Eike G. Hübner
- Technische Universität Clausthal Institut für Organische Chemie Leibnizstrasse 6 38678 Clausthal-Zellerfeld Deutschland
- Fraunhofer Heinrich-Hertz-Institut HHI Faseroptische Sensorsysteme Am Stollen 19H 38640 Goslar Deutschland
| | - Jan C. Namyslo
- Technische Universität Clausthal Institut für Organische Chemie Leibnizstrasse 6 38678 Clausthal-Zellerfeld Deutschland
| | - Martin Nieger
- Universität Helsinki Department für Chemie P.O. Box 55 00014 Helsinki Finnland
| | - Andreas Schmidt
- Technische Universität Clausthal Institut für Organische Chemie Leibnizstrasse 6 38678 Clausthal-Zellerfeld Deutschland
| |
Collapse
|
7
|
Nagorny S, Lederle F, Udachin V, Weingartz T, Hübner EG, Dahle S, Maus‐Friedrichs W, Adams J, Schmidt A. Switchable Mesomeric Betaines Derived from Pyridinium‐Phenolates and Bis(thienyl)ethane. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sven Nagorny
- Clausthal University of Technology Institute of Organic Chemistry Leibnizstrasse 6 38678 Clausthal-Zellerfeld Germany
| | - Felix Lederle
- Clausthal University of Technology Institute of Energy Research and Physical Technologies Am Stollen 19 B D-38640 Goslar Germany
| | - Viktor Udachin
- Clausthal University of Technology Institute of Energy Research and Physical Technologies Leibnizstrasse 4 38678 Clausthal-Zellerfeld Germany
- Clausthal University of Technology Clausthal Centre for Material Technology Agricolastrasse 2 38678 Clausthal-Zellerfeld Germany
| | - Thea Weingartz
- Clausthal University of Technology Institute of Organic Chemistry Leibnizstrasse 6 38678 Clausthal-Zellerfeld Germany
| | - Eike G. Hübner
- Clausthal University of Technology Institute of Organic Chemistry Leibnizstrasse 6 38678 Clausthal-Zellerfeld Germany
| | - Sebastian Dahle
- Clausthal University of Technology Institute of Energy Research and Physical Technologies Leibnizstrasse 4 38678 Clausthal-Zellerfeld Germany
- Clausthal University of Technology Clausthal Centre for Material Technology Agricolastrasse 2 38678 Clausthal-Zellerfeld Germany
| | - Wolfgang Maus‐Friedrichs
- Clausthal University of Technology Institute of Energy Research and Physical Technologies Leibnizstrasse 4 38678 Clausthal-Zellerfeld Germany
- Clausthal University of Technology Clausthal Centre for Material Technology Agricolastrasse 2 38678 Clausthal-Zellerfeld Germany
| | - Jörg Adams
- Clausthal University of Technology Institute of Physical Chemistry Arnold-Sommerfeld-Strasse 4 38678 Clausthal-Zellerfeld Germany
| | - Andreas Schmidt
- Clausthal University of Technology Institute of Organic Chemistry Leibnizstrasse 6 38678 Clausthal-Zellerfeld Germany
| |
Collapse
|
8
|
Pedowitz NJ, Pratt MR. Design and Synthesis of Metabolic Chemical Reporters for the Visualization and Identification of Glycoproteins. RSC Chem Biol 2021; 2:306-321. [PMID: 34337414 PMCID: PMC8323544 DOI: 10.1039/d1cb00010a] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Glycosylation events play an invaluable role in regulating cellular processes including enzymatic activity, immune recognition, protein stability, and cell-cell interactions. However, researchers have yet to realize the full range of glycan mediated biological functions due to a lack of appropriate chemical tools. Fortunately, the past 25 years has seen the emergence of modified sugar analogs, termed metabolic chemical reporters (MCRs), which are metabolized by endogenous enzymes to label complex glycan structures. Here, we review the major reporters for each class of glycosylation and highlight recent applications that have made a tremendous impact on the field of glycobiology.
Collapse
Affiliation(s)
- Nichole J Pedowitz
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, United States
| | - Matthew R Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, United States
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, United States
| |
Collapse
|
9
|
Li Y, Fu H. Bioorthogonal Ligations and Cleavages in Chemical Biology. ChemistryOpen 2020; 9:835-853. [PMID: 32817809 PMCID: PMC7426781 DOI: 10.1002/open.202000128] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Bioorthogonal reactions including the bioorthogonal ligations and cleavages have become an active field of research in chemical biology, and they play important roles in chemical modification and functional regulation of biomolecules. This review summarizes the developments and applications of the representative bioorthogonal reactions including the Staudinger reactions, the metal-mediated bioorthogonal reactions, the strain-promoted cycloadditions, the inverse electron demand Diels-Alder reactions, the light-triggered bioorthogonal reactions, and the reactions of chloroquinoxalines and ortho-dithiophenols.
Collapse
Affiliation(s)
- Youshan Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| | - Hua Fu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| |
Collapse
|