1
|
Zou XJ, Jin ZX, Yang HY, Wu F, Ren ZH, Guan ZH. Palladium-Catalyzed Inward Isomerization Hydroaminocarbonylation of Alkenes. Angew Chem Int Ed Engl 2024; 63:e202406226. [PMID: 38618886 DOI: 10.1002/anie.202406226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/16/2024]
Abstract
In contrast to the kinetically favored outward isomerization-hydrocarbonylation of alkenes, the disfavored inward isomerization-hydrocarbonylation of alkenes remains an important challenge. Herein, we have developed a novel and effective palladium-catalyzed inward isomerization-hydroaminocarbonylation of unactivated alkenes and aniline hydrochlorides for the formation of synthetically valuable α-aryl carboxylic amides in high yields and high site-selectivities. The high efficiency of the reaction is attributed to a relay catalysis strategy, in which the Markovnikov-favored [PdH]-PtBu3 catalyst is responsible for inward isomerization, while the [PdH]-Ruphos catalyst is responsible for hydroaminocarbonylation of the resulting conjugated aryl alkenes. The reaction exhibits highly functional group tolerance and provides a new method for formal carbonylation of remote C(sp3)-H bond.
Collapse
Affiliation(s)
- Xian-Jin Zou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P.R. China
| | - Zhao-Xing Jin
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P.R. China
| | - Hui-Yi Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P.R. China
| | - Fei Wu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P.R. China
| | - Zhi-Hui Ren
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P.R. China
| | - Zheng-Hui Guan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P.R. China
| |
Collapse
|
2
|
Kong S, Zhang M, Wang S, Wu H, Zou H, Huang G. Mechanism and Origins of Diastereo- and Regioselectivities of Palladium-Catalyzed Remote Diborylative Cyclization of Dienes via Chain-Walking Strategy. Chem Asian J 2023; 18:e202201057. [PMID: 36415038 DOI: 10.1002/asia.202201057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/20/2022] [Indexed: 11/24/2022]
Abstract
Density functional theory calculations have been performed to investigate the palladium-catalyzed remote diborylative cyclization of dienes. The computations reveal that the reaction proceeds through a rarely explored Pd(II)/Pd(IV) catalytic cycle, and the formal σ-bond metathesis between the alkylpalladium intermediate and B2 pin2 occurs via the pathway of the B-B oxidative addition/C-B reductive elimination involving the high-valent Pd(IV) species. The diastereoselectivity is determined by the migratory insertion into the Pd-C bond, which is mainly due to the combination of the torsional strain effect, steric repulsion and C-H-O hydrogen-bonding interaction. The steric hindrance around the reacting carbon group in the C-B reductive elimination turns out to be a key factor to provide the driving force of the chain walking of the Pd center to the terminal primary carbon position, enabling the experimentally observed remote regioselectivity.
Collapse
Affiliation(s)
- Shuqi Kong
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Mengyao Zhang
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Shiyu Wang
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Hongli Wu
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Hongyan Zou
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Genping Huang
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
3
|
Li HL, Huang WS, Ling FY, Li L, Yan JH, Xu H, Xu LW. Highly Diastereoselective Hydrosilane-Assisted Rhodium-Catalyzed Spiro-Type Cycloisomerization of Succinimide and Pyrazolone-Based Functional 1,6-Dienes. Chem Asian J 2021; 16:1730-1734. [PMID: 33945231 DOI: 10.1002/asia.202100372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/04/2021] [Indexed: 01/28/2023]
Abstract
Organosilicon compounds are important reagents and synthetic intermediates that play a key role in the construction of new materials and complex products. Here we show a highly diastereoselective rhodium-catalyzed cycloisomerization of 1,6-dienes, in which the use of (EtO)3 SiH accelerates the intramolecular cyclization reaction to afford a novel spiro-fused succinimide and pyrazolone derivatives in moderate to excellent yields as a single diastereoisomer. The proposed mechanism involves an active Rh-H species from the hydrosilane that is the H-donor in this spiro-type cycloisomerization reaction.
Collapse
Affiliation(s)
- Hui-Lin Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Laboratory of Organosilicon Material Technology of Zhejiang Province College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Wei-Sheng Huang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Laboratory of Organosilicon Material Technology of Zhejiang Province College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Fang-Ying Ling
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Laboratory of Organosilicon Material Technology of Zhejiang Province College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Li Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Laboratory of Organosilicon Material Technology of Zhejiang Province College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Jun-Hao Yan
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Laboratory of Organosilicon Material Technology of Zhejiang Province College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Hao Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Laboratory of Organosilicon Material Technology of Zhejiang Province College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Laboratory of Organosilicon Material Technology of Zhejiang Province College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P. R. China.,State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute (SRI), Lanzhou Institute of Chemical Physics (LICP), University of the Chinese Academy of Sciences (UCAS), Lanzhou, 730000, P. R. China
| |
Collapse
|
4
|
Bonfield HE, Valette D, Lindsay DM, Reid M. Stereoselective Remote Functionalization via Palladium-Catalyzed Redox-Relay Heck Methodologies. Chemistry 2021; 27:158-174. [PMID: 32744766 PMCID: PMC7821197 DOI: 10.1002/chem.202002849] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Indexed: 11/29/2022]
Abstract
Exploration of novel, three-dimensional chemical space is of growing interest in the drug discovery community and with this comes the challenge for synthetic chemists to devise new stereoselective methods to introduce chirality in a rapid and efficient manner. This Minireview provides a timely summary of the development of palladium-catalyzed asymmetric redox-relay Heck-type processes. These reactions represent an important class of transformation for the selective introduction of remote stereocenters, and have risen to prominence over the past decade. Within this Minireview, the vast scope of these transformations will be showcased, alongside applications to pharmaceutically relevant chiral building blocks and drug substances. To complement this overview, a mechanistic summary and discussion of the current limitations of the transformation are presented, followed by an outlook on future areas of investigation.
Collapse
Affiliation(s)
- Holly E. Bonfield
- Chemical DevelopmentGlaxoSmithKlineGunnels Wood RoadStevenageHertfordshireSG1 2NYUK
- Department of Pure and Applied Chemistry WestCHEMUniversity of Strathclyde295 Cathedral StreetGlasgowScotlandG1 1XLUK
| | - Damien Valette
- Chemical DevelopmentGlaxoSmithKlineGunnels Wood RoadStevenageHertfordshireSG1 2NYUK
| | - David M. Lindsay
- Department of Pure and Applied Chemistry WestCHEMUniversity of Strathclyde295 Cathedral StreetGlasgowScotlandG1 1XLUK
| | - Marc Reid
- Department of Pure and Applied Chemistry WestCHEMUniversity of Strathclyde295 Cathedral StreetGlasgowScotlandG1 1XLUK
| |
Collapse
|
5
|
Yu R, Rajasekar S, Fang X. Enantioselective Nickel‐Catalyzed Migratory Hydrocyanation of Nonconjugated Dienes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008854] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rongrong Yu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Shanmugam Rajasekar
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Xianjie Fang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| |
Collapse
|
6
|
Yu R, Rajasekar S, Fang X. Enantioselective Nickel-Catalyzed Migratory Hydrocyanation of Nonconjugated Dienes. Angew Chem Int Ed Engl 2020; 59:21436-21441. [PMID: 32786048 DOI: 10.1002/anie.202008854] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/03/2020] [Indexed: 12/23/2022]
Abstract
Metal-catalyzed chain-walking reactions have recently emerged as a powerful strategy to functionalize remote positions in organic molecules. However, a chain-walking protocol for nonconjugated dienes remains scarcely reported, and developments are currently ongoing. In this Communication, a nickel-catalyzed asymmetric hydrocyanation of nonconjugated dienes involving a chain-walking process is demonstrated. The reaction exhibits excellent regio- and chemoselectivity, and a wide range of substrates were tolerated, delivering the products in high yields and enantioselectivities. Deuterium-labeling experiments support the chain-walking process, which involves an iterative β-H elimination and reinsertion processes. Gram-scale synthesis, regioconvergent experiments, and downstream transformations gave further insights into the high potential of this transformation.
Collapse
Affiliation(s)
- Rongrong Yu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Shanmugam Rajasekar
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Xianjie Fang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
7
|
Hou YN, Sun SY, Yang ZN, Yun H, Zhu TT, Ma JF, Han JL, Wang AJ, Cheng HY. Shewanella oneidensis MR-1 self-assembled Pd-cells-rGO conductive composite for enhancing electrocatalysis. ENVIRONMENTAL RESEARCH 2020; 184:109317. [PMID: 32145551 DOI: 10.1016/j.envres.2020.109317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
Biosynthesized noble metal nanoparticles (NPs) as promising green catalysts for electrochemical application has invited a lot of attention. However, effective electron transfer between biosynthesized NPs and electrode remains a challenge due to the uncontrollable and poor conductive property of cell substrates. In this study, graphene oxide (GO) was introduced into a bio-Pd synthesis process governed by Shewanella oneidensis MR-1, which was demonstrated to be simultaneously reduced with Pd(II) and transformed to reduced GO (rGO), resulting in the formation of a Pd-cells-rGO composite. Compared to the control without rGO (Pd-cells), the electrochemical conductivity of Pd-cells-rGO composite increased from almost zero to 196 μS cm-1, indicating the rGO facilities the electron transport across the composite. Electrochemical characterizations revealed the electrochemical active surface area (ECSA) of Pd in Pd-cells-rGO was enlarged by increasing the amount of rGO in the composite, clearly indicating that the conductive network created by rGO enable the Pd NPs receive electrons from electrode and become electrochemical active. A considerable enhancement of electrocatalytic activity was further confirmed for Pd-cells-rGO as indicated by 36.7- and 17.2-fold increase (Pd-cells-rGO with Pd/GO ratio of 5/1 vs Pd-cells) of steady state current density toward hydrogen evolution and nitrobenzene reduction at -0.7 V and -0.55 V vs Ag/AgCl, respectively. We also compared the electrocatalytic performance with MWCNTs hybrids Pd-cells-CNTs. It was found that the association of Pd, cells and rGO creates an interactive and synergistic environment to allow higher conductivity and catalytic activity under the same amount of carbon nanomaterial. The strategy developed in this work activates a highly reactive NPs and proposed a designable protocol for enhancing electrocatalytic activity of biocatalysts.
Collapse
Affiliation(s)
- Ya-Nan Hou
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Su-Yun Sun
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| | - Zhen-Ni Yang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Hui Yun
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Lanzhou, 730000, China
| | - Ting-Ting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jin-Feng Ma
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| | - Jing-Long Han
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Hao-Yi Cheng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| |
Collapse
|
8
|
Ge Y, Zhang J, Qiu Z, Xie Z. Pd‐Catalyzed Selective Bifunctionalization of 3‐Iodo‐
o
‐Carborane by Pd Migration. Angew Chem Int Ed Engl 2020; 59:4851-4855. [DOI: 10.1002/anie.201914500] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/23/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Yixiu Ge
- Shanghai-Hong Kong Joint Laboratory in Chemical SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Jie Zhang
- Department of Chemistry and State Key Laboratory of Synthetic ChemistryThe Chinese University of Hong Kong, Shatin, N. T. Hong Kong China
| | - Zaozao Qiu
- Shanghai-Hong Kong Joint Laboratory in Chemical SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- CAS Key Laboratory of Energy Regulation MaterialsShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Rd Shanghai 200032 China
- Fujian Innovation AcademyChinese Academy of Sciences 155 Yangqiao Rd West Fuzhou 350002 China
| | - Zuowei Xie
- Shanghai-Hong Kong Joint Laboratory in Chemical SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- Department of Chemistry and State Key Laboratory of Synthetic ChemistryThe Chinese University of Hong Kong, Shatin, N. T. Hong Kong China
| |
Collapse
|
9
|
Ge Y, Zhang J, Qiu Z, Xie Z. Pd‐Catalyzed Selective Bifunctionalization of 3‐Iodo‐
o
‐Carborane by Pd Migration. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914500] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yixiu Ge
- Shanghai-Hong Kong Joint Laboratory in Chemical SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Jie Zhang
- Department of Chemistry and State Key Laboratory of Synthetic ChemistryThe Chinese University of Hong Kong, Shatin, N. T. Hong Kong China
| | - Zaozao Qiu
- Shanghai-Hong Kong Joint Laboratory in Chemical SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- CAS Key Laboratory of Energy Regulation MaterialsShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Rd Shanghai 200032 China
- Fujian Innovation AcademyChinese Academy of Sciences 155 Yangqiao Rd West Fuzhou 350002 China
| | - Zuowei Xie
- Shanghai-Hong Kong Joint Laboratory in Chemical SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- Department of Chemistry and State Key Laboratory of Synthetic ChemistryThe Chinese University of Hong Kong, Shatin, N. T. Hong Kong China
| |
Collapse
|
10
|
Cui WC, Zhao W, Gao M, Liu W, Wang S, Liang Y, Yao ZJ. Diastereoselective Synthesis of Polysubstituted Piperidines through Visible-Light-Driven Silylative Cyclization of Aza-1,6-Dienes: Experimental and DFT Studies. Chemistry 2019; 25:16506-16510. [PMID: 31544271 DOI: 10.1002/chem.201903440] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/19/2019] [Indexed: 01/24/2023]
Abstract
A visible-light-driven radical silylative cyclization of aza-1,6-dienes featuring an acrylonitrile or acrylate moiety and an electron-neutral olefin was developed, which allows for stereoselective synthesis of densely functionalized piperidines in a highly atom-economical manner. Depending on the substitution pattern of the electron-neutral olefin, poor-to-excellent diastereoselectivity was observed. It was suggested that the 6-exo-trig cyclization was initiated by a chemoselective addition of silyl radical toward electron-deficient olefin and the geometry of the remaining olefin is closely associated with the cis-stereoselectivity. DFT calculations supported that a transition state with a cyano group locating at the axial position of the forming piperidine ring might be involved, in which either the increase of 1,3-diaxial repulsion or the lack of hydrogen bonding interaction will diminish diastereoselectivity.
Collapse
Affiliation(s)
- Wei-Chen Cui
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Wenxuan Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Ming Gao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Wei Liu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Shaozhong Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Zhu-Jun Yao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|