1
|
Chhalodia AK, Dickschat JS. The Stereochemical Course of DmdC, an Enzyme Involved in the Degradation of Dimethylsulfoniopropionate. Chembiochem 2024; 25:e202300795. [PMID: 38084863 DOI: 10.1002/cbic.202300795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/11/2023] [Indexed: 01/18/2024]
Abstract
The acyl-CoA dehydrogenase DmdC is involved in the degradation of the marine sulfur metabolite dimethylsulfonio propionate (DMSP) through the demethylation pathway. The stereochemical course of this reaction was investigated through the synthesis of four stereoselectively deuterated substrate surrogates carrying stereoselective deuterations at the α- or the β-carbon. Analysis of the products revealed a specific abstraction of the 2-pro-R proton and of the 3-pro-S hydride, establishing an anti elimination for the DmdC reaction.
Collapse
Affiliation(s)
- Anuj K Chhalodia
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Jeroen S Dickschat
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
2
|
Carrión O, Zhu XY, Williams BT, Wang J, Zhang XH, Todd JD. Molecular discoveries in microbial DMSP synthesis. Adv Microb Physiol 2023; 83:59-116. [PMID: 37507162 DOI: 10.1016/bs.ampbs.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Dimethylsulfoniopropionate (DMSP) is one of the Earth's most abundant organosulfur compounds because many marine algae, bacteria, corals and some plants produce it to high mM intracellular concentrations. In these organisms, DMSP acts an anti-stress molecule with purported roles to protect against salinity, temperature, oxidative stress and hydrostatic pressure, amongst many other reported functions. However, DMSP is best known for being a major precursor of the climate-active gases and signalling molecules dimethylsulfide (DMS), methanethiol (MeSH) and, potentially, methane, through microbial DMSP catabolism. DMSP catabolism has been extensively studied and the microbes, pathways and enzymes involved have largely been elucidated through the application of molecular research over the last 17 years. In contrast, the molecular biology of DMSP synthesis is a much newer field, with the first DMSP synthesis enzymes only being identified in the last 5 years. In this review, we discuss how the elucidation of key DMSP synthesis enzymes has greatly expanded our knowledge of the diversity of DMSP-producing organisms, the pathways used, and what environmental factors regulate production, as well as to inform on the physiological roles of DMSP. Importantly, the identification of key DMSP synthesis enzymes in the major groups of DMSP producers has allowed scientists to study the distribution and predict the importance of different DMSP-producing organisms to global DMSP production in diverse marine and sediment environments. Finally, we highlight key challenges for future molecular research into DMSP synthesis that need addressing to better understand the cycling of this important marine organosulfur compound, and its magnitude in the environment.
Collapse
Affiliation(s)
- Ornella Carrión
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom.
| | - Xiao-Yu Zhu
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Beth T Williams
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Jinyan Wang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Jonathan D Todd
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom.
| |
Collapse
|
3
|
Shaw DK, Sekar J, Ramalingam PV. Recent insights into oceanic dimethylsulfoniopropionate biosynthesis and catabolism. Environ Microbiol 2022; 24:2669-2700. [PMID: 35611751 DOI: 10.1111/1462-2920.16045] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022]
Abstract
Dimethylsulfoniopropionate (DMSP), a globally important organosulfur compound is produced in prodigious amounts (2.0 Pg sulfur) annually in the marine environment by phytoplankton, macroalgae, heterotrophic bacteria, some corals and certain higher plants. It is an important marine osmolyte and a major precursor molecule for the production of climate-active volatile gas dimethyl sulfide (DMS). DMSP synthesis take place via three pathways: a transamination 'pathway-' in some marine bacteria and algae, a Met-methylation 'pathway-' in angiosperms and bacteria and a decarboxylation 'pathway-' in the dinoflagellate, Crypthecodinium. The enzymes DSYB and TpMMT are involved in the DMSP biosynthesis in eukaryotes while marine heterotrophic bacteria engage key enzymes such as DsyB and MmtN. Several marine bacterial communities import DMSP and degrade it via cleavage or demethylation pathways or oxidation pathway, thereby generating DMS, methanethiol, and dimethylsulfoxonium propionate, respectively. DMSP is cleaved through diverse DMSP lyase enzymes in bacteria and via Alma1 enzyme in phytoplankton. The demethylation pathway involves four different enzymes, namely DmdA, DmdB, DmdC and DmdD/AcuH. However, enzymes involved in the oxidation pathway have not been yet identified. We reviewed the recent advances on the synthesis and catabolism of DMSP and enzymes that are involved in these processes.
Collapse
Affiliation(s)
- Deepak Kumar Shaw
- Microbiology Lab, Department of Biotechnology, M. S. Swaminathan Research Foundation, Taramani, Chennai, 600113, Tamil Nadu, India
| | - Jegan Sekar
- Microbiology Lab, Department of Biotechnology, M. S. Swaminathan Research Foundation, Taramani, Chennai, 600113, Tamil Nadu, India
| | - Prabavathy Vaiyapuri Ramalingam
- Microbiology Lab, Department of Biotechnology, M. S. Swaminathan Research Foundation, Taramani, Chennai, 600113, Tamil Nadu, India
| |
Collapse
|
4
|
Ye Z, Zhu H, Zhang S, Li J, Wang J, Wang E. Highly efficient nanomedicine from cationic antimicrobial peptide-protected Ag nanoclusters. J Mater Chem B 2021; 9:307-313. [PMID: 33289752 DOI: 10.1039/d0tb02267e] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Designing the homogeneous assembly of the bio-nano interface to fine-tune the interactions between the nanoprobes and biological systems is of prime importance to improve the antimicrobial efficiency of nanomedicines. In this work, highly luminescent silver nanoclusters with the homogeneous conjugation of an antimicrobial peptide (referred to as Dpep-Ag NCs) were achieved via the reduction-decomposition-reduction process as a single package. The as-designed Dpep-Ag NCs inherited the two distinctive features of bactericides from the Ag+ species and the antimicrobial peptide of Dpep, and exhibited enhanced bacterial killing efficiency compared with other control groups including BSA-capped Ag NCs and the original antimicrobial peptide bactenecin (Opep)-protected Ag nanoparticles (Opep-Ag NPs). The ultrasmall size feature of Dpep-Ag NCs combined with the positively charged bactericidal tail allow a better interface and interaction with the cell membrane owing to the selective targeting of lipopolysaccharides in the Gram-negative bacteria and electrostatic interaction, facilitating the membrane permeability. Dpep-Ag NCs restrained the E. coli growth visibly and outperformed commercial Ag NPs (30 nm) with reduced (ca. 100-fold) minimal inhibitory concentration. The analysis of infected wound sizes and tissues treated with Dpep-Ag NCs in a murine model reveal obvious differences in the healing effect compared with the other counterparts, demonstrating its antibacterial efficiency in practical application.
Collapse
Affiliation(s)
- Zhikai Ye
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. and University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Haishuang Zhu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. and University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Shan Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. and University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Jing Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | - Jin Wang
- Department of Chemistry, Physics and Applied Mathematics, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, USA.
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| |
Collapse
|
5
|
Li Z, Wang X, Cui YM, Ma JH, Fang LL, Han LL, Yang Q, Xu Z, Xu LW. Combined Dynamic Kinetic Resolution and C-H Functionalization for Facile Synthesis of Non-Biaryl-Atropisomer-Type Axially Chiral Organosilanes. Chemistry 2021; 27:4336-4340. [PMID: 33481303 DOI: 10.1002/chem.202100237] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Indexed: 02/06/2023]
Abstract
Although asymmetric C-H functionalization has been available for the synthesis of structurally diverse molecules, catalytic dynamic kinetic resolution (DKR) approaches to change racemic stereogenic axes remain synthetic challenges in this field. Here, a concise palladium-catalyzed DKR was combined with C-H functionalization involving olefination and alkynylation for the highly efficient synthesis of non-biaryl-atropisomer-type (NBA) axially chiral oragnosilanes. The chemistry proceeded through two different and distinct DKR: first, an atroposelective C-H olefination or alkynylation produced axially chiral vinylsilanes or alkynylsilanes as a new family of non-biaryl atropisomers (NBA), and second, the extension of this DKR strategy to twofold o,o'-C-H functionalization led to the multifunctional axially chiral organosilicon compounds with up to >99 % ee.
Collapse
Affiliation(s)
- Zhao Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Xu Wang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Yu-Ming Cui
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Jun-Han Ma
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Li-Lei Fang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Lu-Lu Han
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Qin Yang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China.,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute and Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Hangzhou, 311121, P. R. China
| |
Collapse
|
6
|
Zheng Y, Wang J, Zhou S, Zhang Y, Liu J, Xue CX, Williams BT, Zhao X, Zhao L, Zhu XY, Sun C, Zhang HH, Xiao T, Yang GP, Todd JD, Zhang XH. Bacteria are important dimethylsulfoniopropionate producers in marine aphotic and high-pressure environments. Nat Commun 2020; 11:4658. [PMID: 32938931 PMCID: PMC7494906 DOI: 10.1038/s41467-020-18434-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 08/21/2020] [Indexed: 11/17/2022] Open
Abstract
Dimethylsulfoniopropionate (DMSP) is an important marine osmolyte. Aphotic environments are only recently being considered as potential contributors to global DMSP production. Here, our Mariana Trench study reveals a typical seawater DMSP/dimethylsulfide (DMS) profile, with highest concentrations in the euphotic zone and decreased but consistent levels below. The genetic potential for bacterial DMSP synthesis via the dsyB gene and its transcription is greater in the deep ocean, and is highest in the sediment.s DMSP catabolic potential is present throughout the trench waters, but is less prominent below 8000 m, perhaps indicating a preference to store DMSP in the deep for stress protection. Deep ocean bacterial isolates show enhanced DMSP production under increased hydrostatic pressure. Furthermore, bacterial dsyB mutants are less tolerant of deep ocean pressures than wild-type strains. Thus, we propose a physiological function for DMSP in hydrostatic pressure protection, and that bacteria are key DMSP producers in deep seawater and sediment. Dimethylsulfoniopropionate (DMSP) is an osmolyte produced by marine microbes that plays an important role in nutrient cycling and atmospheric chemistry. Here the authors go to the Mariana Trench—the deepest point in the ocean—and find bacteria are key DMSP producers, and that DMSP has a role in protection against high pressure.
Collapse
Affiliation(s)
- Yanfen Zheng
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Jinyan Wang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Shun Zhou
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yunhui Zhang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Ji Liu
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Chun-Xu Xue
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Beth T Williams
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Xiuxiu Zhao
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Li Zhao
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xiao-Yu Zhu
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Chuang Sun
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Hong-Hai Zhang
- MOE Key Laboratory of Marine Chemistry Theory and Technology, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Tian Xiao
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Gui-Peng Yang
- MOE Key Laboratory of Marine Chemistry Theory and Technology, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jonathan D Todd
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China. .,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
7
|
Trottmann F, Ishida K, Franke J, Stanišić A, Ishida‐Ito M, Kries H, Pohnert G, Hertweck C. Sulfonium Acids Loaded onto an Unusual Thiotemplate Assembly Line Construct the Cyclopropanol Warhead of a
Burkholderia
Virulence Factor. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Felix Trottmann
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology (HKI) Beutenbergstrasse 11a 07745 Jena Germany
| | - Keishi Ishida
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology (HKI) Beutenbergstrasse 11a 07745 Jena Germany
| | - Jakob Franke
- Institute of Botany Leibniz University Hannover 30419 Hannover Germany
| | - Aleksa Stanišić
- Junior Research Group Biosynthetic Design of Natural Products Leibniz Institute for Natural Product Research and Infection Biology (HKI) Beutenbergstrasse 11a 07745 Jena Germany
| | - Mie Ishida‐Ito
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology (HKI) Beutenbergstrasse 11a 07745 Jena Germany
| | - Hajo Kries
- Junior Research Group Biosynthetic Design of Natural Products Leibniz Institute for Natural Product Research and Infection Biology (HKI) Beutenbergstrasse 11a 07745 Jena Germany
| | - Georg Pohnert
- Institute for Inorganic and Analytical Chemistry Friedrich Schiller University Jena 07743 Jena Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology (HKI) Beutenbergstrasse 11a 07745 Jena Germany
- Natural Product Chemistry Faculty of Biological Sciences Friedrich Schiller University Jena 07743 Jena Germany
| |
Collapse
|
8
|
Trottmann F, Ishida K, Franke J, Stanišić A, Ishida-Ito M, Kries H, Pohnert G, Hertweck C. Sulfonium Acids Loaded onto an Unusual Thiotemplate Assembly Line Construct the Cyclopropanol Warhead of a Burkholderia Virulence Factor. Angew Chem Int Ed Engl 2020; 59:13511-13515. [PMID: 32314848 PMCID: PMC7496086 DOI: 10.1002/anie.202003958] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Indexed: 12/13/2022]
Abstract
Pathogenic bacteria of the Burkholderia pseudomallei group cause severe infectious diseases such as glanders and melioidosis. Malleicyprols were identified as important bacterial virulence factors, yet the biosynthetic origin of their cyclopropanol warhead has remained enigmatic. By a combination of mutational analysis and metabolomics we found that sulfonium acids, dimethylsulfoniumpropionate (DMSP) and gonyol, known as osmolytes and as crucial components in the global organosulfur cycle, are key intermediates en route to the cyclopropanol unit. Functional genetics and in vitro analyses uncover a specialized pathway to DMSP involving a rare prokaryotic SET‐domain methyltransferase for a cryptic methylation, and show that DMSP is loaded onto the NRPS‐PKS hybrid assembly line by an adenylation domain dedicated to zwitterionic starter units. Then, the megasynthase transforms DMSP into gonyol, as demonstrated by heterologous pathway reconstitution in E. coli.
Collapse
Affiliation(s)
- Felix Trottmann
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Keishi Ishida
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Jakob Franke
- Institute of Botany, Leibniz University Hannover, 30419, Hannover, Germany
| | - Aleksa Stanišić
- Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Mie Ishida-Ito
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Hajo Kries
- Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Georg Pohnert
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstrasse 11a, 07745, Jena, Germany.,Natural Product Chemistry, Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany
| |
Collapse
|
9
|
Song D, Zhang Y, Liu J, Zhong H, Zheng Y, Zhou S, Yu M, Todd JD, Zhang XH. Metagenomic Insights Into the Cycling of Dimethylsulfoniopropionate and Related Molecules in the Eastern China Marginal Seas. Front Microbiol 2020; 11:157. [PMID: 32132981 PMCID: PMC7039863 DOI: 10.3389/fmicb.2020.00157] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/22/2020] [Indexed: 11/13/2022] Open
Abstract
The microbial cycling of dimethylsulfoniopropionate (DMSP) and its gaseous catabolites dimethylsulfide (DMS) and methanethiol (MeSH) are important processes in the global sulfur cycle, marine microbial food webs, signaling pathways, atmospheric chemistry, and potentially climate regulation. Many functional genes have been identified and used to study the genetic potential of microbes to produce and catabolize these organosulfur compounds in different marine environments. Here, we sampled seawater, marine sediment and hydrothermal sediment, and polymetallic sulfide in the eastern Chinese marginal seas and analyzed their microbial communities for the genetic potential to cycle DMSP, DMS, and MeSH using metagenomics. DMSP was abundant in all sediment samples, but was fivefold less prominent in those from hydrothermal samples. Indeed, Yellow Sea (YS) sediment samples had DMSP concentrations two orders of magnitude higher than in surface water samples. Bacterial genetic potential to synthesize DMSP (mainly in Rhodobacteraceae bacteria) was far higher than for phytoplankton in all samples, but particularly in the sediment where no algal DMSP synthesis genes were detected. Thus, we propose bacteria as important DMSP producers in these marine sediments. DMSP catabolic pathways mediated by the DMSP lyase DddP (prominent in Pseudomonas and Mesorhizobium bacteria) and DMSP demethylase DmdA enzymes (prominent in Rhodobacteraceae bacteria) and MddA-mediated MeSH S-methylation were very abundant in Bohai Sea and Yellow Sea sediments (BYSS) samples. In contrast, the genetic potential for DMSP degradation was very low in the hydrothermal sediment samples-dddP was the only catabolic gene detected and in only one sample. However, the potential for DMS production from MeSH (mddA) and DMS oxidation (dmoA and ddhA) was relatively abundant. This metagenomics study does not provide conclusive evidence for DMSP cycling; however, it does highlight the potential importance of bacteria in the synthesis and catabolism of DMSP and related compounds in diverse sediment environments.
Collapse
Affiliation(s)
- Delei Song
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yunhui Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Ji Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Haohui Zhong
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yanfen Zheng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Shun Zhou
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Min Yu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jonathan D. Todd
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Xiao-Hua Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| |
Collapse
|
10
|
Abstract
Marine microorganisms play crucial roles in Earth's element cycles through the production and consumption of organic matter. One of the elements whose fate is governed by microbial activities is sulfur, an essential constituent of biomass and a crucial player in climate processes. With sulfur already being well studied in the ocean in its inorganic forms, organic sulfur compounds are emerging as important chemical links between marine phytoplankton and bacteria. The high concentration of inorganic sulfur in seawater, which can readily be reduced by phytoplankton, provides a freely available source of sulfur for biomolecule synthesis. Mechanisms such as exudation and cell lysis release these phytoplankton-derived sulfur metabolites into seawater, from which they are rapidly assimilated by marine bacteria and archaea. Energy-limited bacteria use scavenged sulfur metabolites as substrates or for the synthesis of vitamins, cofactors, signalling compounds and antibiotics. In this Review, we examine the current knowledge of sulfur metabolites released into and taken up from the marine dissolved organic matter pool by microorganisms, and the ecological links facilitated by their diversity in structures, oxidation states and chemistry.
Collapse
|
11
|
Williams BT, Cowles K, Bermejo Martínez A, Curson ARJ, Zheng Y, Liu J, Newton-Payne S, Hind AJ, Li CY, Rivera PPL, Carrión O, Liu J, Spurgin LG, Brearley CA, Mackenzie BW, Pinchbeck BJ, Peng M, Pratscher J, Zhang XH, Zhang YZ, Murrell JC, Todd JD. Bacteria are important dimethylsulfoniopropionate producers in coastal sediments. Nat Microbiol 2019; 4:1815-1825. [PMID: 31427729 DOI: 10.1038/s41564-019-0527-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/28/2019] [Indexed: 11/09/2022]
Abstract
Dimethylsulfoniopropionate (DMSP) and its catabolite dimethyl sulfide (DMS) are key marine nutrients1,2 that have roles in global sulfur cycling2, atmospheric chemistry3, signalling4,5 and, potentially, climate regulation6,7. The production of DMSP was previously thought to be an oxic and photic process that is mainly confined to the surface oceans. However, here we show that DMSP concentrations and/or rates of DMSP and DMS synthesis are higher in surface sediment from, for example, saltmarsh ponds, estuaries and the deep ocean than in the overlying seawater. A quarter of bacterial strains isolated from saltmarsh sediment produced DMSP (up to 73 mM), and we identified several previously unknown producers of DMSP. Most DMSP-producing isolates contained dsyB8, but some alphaproteobacteria, gammaproteobacteria and actinobacteria used a methionine methylation pathway independent of DsyB that was previously only associated with higher plants. These bacteria contained a methionine methyltransferase gene (mmtN)-a marker for bacterial synthesis of DMSP through this pathway. DMSP-producing bacteria and their dsyB and/or mmtN transcripts were present in all of the tested seawater samples and Tara Oceans bacterioplankton datasets, but were much more abundant in marine surface sediment. Approximately 1 × 108 bacteria g-1 of surface marine sediment are predicted to produce DMSP, and their contribution to this process should be included in future models of global DMSP production. We propose that coastal and marine sediments, which cover a large part of the Earth's surface, are environments with high levels of DMSP and DMS productivity, and that bacteria are important producers of DMSP and DMS within these environments.
Collapse
Affiliation(s)
- Beth T Williams
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Kasha Cowles
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Ana Bermejo Martínez
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Andrew R J Curson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Yanfen Zheng
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.,College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jingli Liu
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.,College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Simone Newton-Payne
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Andrew J Hind
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Chun-Yang Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Peter Paolo L Rivera
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Ornella Carrión
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Ji Liu
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.,College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Lewis G Spurgin
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Charles A Brearley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | | | - Benjamin J Pinchbeck
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Ming Peng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | | | - Xiao-Hua Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - J Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Jonathan D Todd
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.
| |
Collapse
|