1
|
Chao Y, Thikekar TU, Fang W, Chang R, Xu J, Ouyang N, Xu J, Gao Y, Guo M, Zuilhof H, Sue ACH. "Rim-Differentiated" Pillar[6]arenes. Angew Chem Int Ed Engl 2022; 61:e202204589. [PMID: 35451151 DOI: 10.1002/anie.202204589] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Indexed: 11/06/2022]
Abstract
A "rim-differentiated" pillar[6]arene (RD-P[6]) was obtained successfully, with the assistance of a dimeric silver trifluoroacetate template, among eight different constitutional isomers in a direct and regioselective manner. The solid-state conformation of this macrocycle could switch from the 1,3,5-alternate to a truly rim-differentiated one upon guest inclusion. This highly symmetric RD-P[6] not only hosts metal-containing molecules inside its cavity, but also can form a pillar[6]arene-C60 adduct through co-crystallization on account of donor-acceptor interactions. The development of synthetic strategies to desymmetrize pillararenes offers new opportunities for engineering complex molecular architectures and organic electronic materials.
Collapse
Affiliation(s)
- Yang Chao
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China.,College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Siming District, Xiamen, 361005, P. R. China
| | - Tushar Ulhas Thikekar
- College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Siming District, Xiamen, 361005, P. R. China
| | - Wangjian Fang
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Rong Chang
- College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Siming District, Xiamen, 361005, P. R. China
| | - Jiong Xu
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Nianfeng Ouyang
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Jun Xu
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Yan Gao
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Minjie Guo
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Han Zuilhof
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China.,Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.,Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Andrew C-H Sue
- College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Siming District, Xiamen, 361005, P. R. China
| |
Collapse
|
2
|
Guo F, Wang H, Ye X, Tan CH. Advanced Synthesis Using Photocatalysis Involved Dual Catalytic System. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fenfen Guo
- Zhejiang University of Technology College of Pharmaceutical Science CHINA
| | - Hong Wang
- Zhejiang University of Technology College of Pharmaceutical Science CHINA
| | - Xinyi Ye
- Zhejiang University of Technology College of Pharmaceutical Science 18 Chaowang Road 310014 Hangzhou CHINA
| | - Choon-Hong Tan
- Nanyang Technological University School of Physical and Mathematical Sciences SINGAPORE
| |
Collapse
|
3
|
Chao Y, Thikekar TU, Fang W, Chang R, Xu J, Ouyang N, Xu J, Gao Y, Guo M, Zuilhof H, Sue ACH. "Rim‐Differentiated" Pillar[6]arenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yang Chao
- Tianjin University School of Pharmaceutical Science and Technology CHINA
| | | | - Wangjian Fang
- Tianjin University School of Pharmaceutical Science & Technology CHINA
| | - Rong Chang
- Xiamen University College of Chemistry and Chemical Engineering CHINA
| | - Jiong Xu
- Xiamen University College of Chemistry and Chemical Engineering CHINA
| | - Nianfeng Ouyang
- Xiamen University College of Chemistry & Chemical Engineering CHINA
| | - Jun Xu
- Tianjin University School of Pharmaceutical Science and Technology CHINA
| | - Yan Gao
- Tianjin University School of Pharmaceutical Science and Technology CHINA
| | - Minjie Guo
- Tianjin University School of Pharmaceutical Science & Technology CHINA
| | - Han Zuilhof
- WUR: Wageningen University & Research Chemistry NETHERLANDS
| | - Andrew Chi-Hau Sue
- Xiamen University College of Chemistry and Chemical Engineering 422 Siming S. Rd.Siming Dist. 361005 Xiamen CHINA
| |
Collapse
|
4
|
Morie M, Sekiya R, Haino T. Chirality Induction in a Hydrophilic Metallohelicate. Chem Asian J 2022; 17:e202200275. [DOI: 10.1002/asia.202200275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/13/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Masayuki Morie
- Hiroshima Daigaku - Higashihiroshima Campus: Hiroshima Daigaku Chemistry JAPAN
| | - Ryo Sekiya
- Hiroshima Daigaku - Higashihiroshima Campus: Hiroshima Daigaku Chemistry 1-3-1 Kagamiyama 739-8526 Higashi-Hiroshima JAPAN
| | - Takeharu Haino
- Hiroshima Daigaku - Higashihiroshima Campus: Hiroshima Daigaku Department of Chemistry 1-3-1 Kagamiyama 739-8526 Higashi-Hiroshima JAPAN
| |
Collapse
|
5
|
Horin I, Shalev O, Cohen Y. Aggregation Mode, Host-Guest Chemistry in Water, and Extraction Capability of an Uncharged, Water-Soluble, Liquid Pillar[5]arene Derivative. ChemistryOpen 2021; 10:1111-1115. [PMID: 34730286 PMCID: PMC8564886 DOI: 10.1002/open.202100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/10/2021] [Indexed: 11/05/2022] Open
Abstract
An uncharged, water-soluble per-ethylene-glycol pillar[5]arene derivative (1) was synthesized and its aggregation mode, host-guest chemistry in water and extraction ability was explored. Compound 1 is a liquid at room temperature; in water, limited self-aggregation occurred at high concentrations as deduced from diffusion NMR and dynamic light scattering. Compound 1 forms pseudo-rotaxane-like 1 : 1 host-guest complexes with 1,ω-di-substituted alkanes with association constants on the order of 103 -104 m-1 . Interestingly, NMR experiments showed that the guest location relative to the host ring system differs among the different complexes. In proof-of-concept experiments, compound 1 was shown to extract structurally related organic compounds from benzene into water with significant selectivity. Compound 1, which is a liquid at room temperature and has only limited interactions with its side arms, can, in principle, be regarded as a complement to or as a kind of type I porous liquid.
Collapse
Affiliation(s)
- Inbar Horin
- School of Chemistry, Sackler Faculty of Exact SciencesTel Aviv University Ramat Aviv69978Tel AvivIsrael
| | - Ori Shalev
- School of Chemistry, Sackler Faculty of Exact SciencesTel Aviv University Ramat Aviv69978Tel AvivIsrael
| | - Yoram Cohen
- School of Chemistry, Sackler Faculty of Exact SciencesTel Aviv University Ramat Aviv69978Tel AvivIsrael
| |
Collapse
|
6
|
Yang Y, Zhang P, Hao L, Cheng P, Chen Y, Zhang Z. Grotthuss Proton-Conductive Covalent Organic Frameworks for Efficient Proton Pseudocapacitors. Angew Chem Int Ed Engl 2021; 60:21838-21845. [PMID: 34369054 DOI: 10.1002/anie.202105725] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Indexed: 01/04/2023]
Abstract
Herein, we describe the synthesis of two highly crystalline, robust, hydrophilic covalent organic frameworks (COFs) that display intrinsic proton conduction by the Grotthuss mechanism. The enriched redox-active azo groups in the COFs can undergo a proton-coupled electron transfer reaction for energy storage, making the COFs ideal candidates for pseudocapacitance electrode materials. After in situ hybridization with carbon nanotubes, the composite exhibited a high three-electrode specific capacitance of 440 F g-1 at the current density of 0.5 A g-1 , among the highest for COF-based supercapacitors, and can retain 90 % capacitance even after 10 000 charge-discharge cycles. This is the first example using Grotthuss proton-conductive organic materials to create pseudocapacitors that exhibited both high power density and energy density. The assembled asymmetric two-electrode supercapacitor showed a maximum energy density of 71 Wh kg-1 with a maximum power density of 42 kW kg-1 , surpassing that of all reported COF-based systems.
Collapse
Affiliation(s)
- Yi Yang
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Penghui Zhang
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Liqin Hao
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Peng Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Zhenjie Zhang
- College of Chemistry, Nankai University, Tianjin, 300071, China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.,Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| |
Collapse
|
7
|
Yang Y, Zhang P, Hao L, Cheng P, Chen Y, Zhang Z. Grotthuss Proton‐Conductive Covalent Organic Frameworks for Efficient Proton Pseudocapacitors. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105725] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yi Yang
- College of Chemistry Nankai University Tianjin 300071 China
| | - Penghui Zhang
- College of Chemistry Nankai University Tianjin 300071 China
| | - Liqin Hao
- College of Chemistry Nankai University Tianjin 300071 China
| | - Peng Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical Biology Nankai University Tianjin 300071 China
| | - Zhenjie Zhang
- College of Chemistry Nankai University Tianjin 300071 China
- State Key Laboratory of Medicinal Chemical Biology Nankai University Tianjin 300071 China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 China
| |
Collapse
|
8
|
He L, Lu Q, Yang Y, Liu Y, Zhu Y, Mei Y. Facile Synthesis of Holey Phosphorene via Low Temperature Electrochemical Exfoliation for Electrocatalytic Nitrogen Reduction. ChemistrySelect 2021. [DOI: 10.1002/slct.202100128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ludong He
- Faculty of Chemical Engineering Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials Kunming University of Science and Technology Kunming 650500 Yunnan China
| | - Qiuju Lu
- Faculty of Chemical Engineering Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials Kunming University of Science and Technology Kunming 650500 Yunnan China
| | - Ying Yang
- Faculty of Chemical Engineering Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials Kunming University of Science and Technology Kunming 650500 Yunnan China
| | - Yanqi Liu
- Faculty of Chemical Engineering Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials Kunming University of Science and Technology Kunming 650500 Yunnan China
| | - Yuanzhi Zhu
- Faculty of Chemical Engineering Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials Kunming University of Science and Technology Kunming 650500 Yunnan China
| | - Yi Mei
- Faculty of Chemical Engineering Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials Kunming University of Science and Technology Kunming 650500 Yunnan China
| |
Collapse
|
9
|
Romero M, Mombrú D, Pignanelli F, Faccio R, Mombrú ÁW. From Chain- to Graphene-like Hydroxyl-terminated (ZnO) n Clusters with n≤6 Obtained via Zinc Dimethoxide Hydrolysis and Condensation: Ab initio Structural, Electronic, Vibrational and Optical Properties Calculations. Chemphyschem 2021; 22:849-863. [PMID: 33646619 DOI: 10.1002/cphc.202100054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 03/01/2021] [Indexed: 11/08/2022]
Abstract
Recent reports are focusing on the structural evolution from the atomic-scale and also at the expenses of alkyl zinc alkoxide precursors towards (ZnO)n clusters and nanostructures with different interesting motifs, but still not much is known about their electronic properties. In this manuscript, we present a theoretical study using DFT and TD-DFT methodologies on the hydrolysis and condensation of zinc dimethoxide precursor in its monomeric, dimeric and trimeric forms towards thermodynamically stable hydroxyl-terminated (ZnO)n clusters with novel chain- and graphene-like fashions. For all cases, distinct vibrational and optical spectra features were assigned evidencing a global monotonic decrease in the opto-electronic gap with increasing oligomerization and cyclization stages. In addition, the electron-affinity of all clusters was also observed to be enhanced with increasing oligomerization and cyclization stages and the electronic charge localization in -e charged clusters was observed to be strongly related to the presence of zinc-oxo subunits and other particular structural features. Our calculations also indicate that the stabilization through hydroxyl termination of both chain- and graphene-like ZnO clusters not only could be a promising driving force to obtain larger atomic-scale 1D and 2D nanostructures but also envisage interesting properties, particularly as electronic acceptor materials for energy applications.
Collapse
Affiliation(s)
- Mariano Romero
- Centro NanoMat & Área Física, Departamento de Experimentación y Teoría de la Estructura de la Materia y sus Aplicaciones (DETEMA), Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Dominique Mombrú
- Centro NanoMat & Área Física, Departamento de Experimentación y Teoría de la Estructura de la Materia y sus Aplicaciones (DETEMA), Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Fernando Pignanelli
- Centro NanoMat & Área Física, Departamento de Experimentación y Teoría de la Estructura de la Materia y sus Aplicaciones (DETEMA), Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Ricardo Faccio
- Centro NanoMat & Área Física, Departamento de Experimentación y Teoría de la Estructura de la Materia y sus Aplicaciones (DETEMA), Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Álvaro W Mombrú
- Centro NanoMat & Área Física, Departamento de Experimentación y Teoría de la Estructura de la Materia y sus Aplicaciones (DETEMA), Facultad de Química, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
10
|
Strilets D, Fa S, Hardiagon A, Baaden M, Ogoshi T, Barboiu M. Biomimetic Approach for Highly Selective Artificial Water Channels Based on Tubular Pillar[5]arene Dimers. Angew Chem Int Ed Engl 2020; 59:23213-23219. [PMID: 32905651 DOI: 10.1002/anie.202009219] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/17/2020] [Indexed: 11/08/2022]
Abstract
Artificial water channels mimicking natural aquaporins (AQPs) can be used for selective and fast transport of water. Here, we quantify the transport performances of peralkyl-carboxylate-pillar[5]arenes dimers in bilayer membranes. They can transport ≈107 water molecules/channel/second, within one order of magnitude of the transport rates of AQPs, rejecting Na+ and K+ cations. The dimers have a tubular structure, superposing pillar[5]arene pores of 5 Å diameter with twisted carboxy-phenyl pores of 2.8 Å diameter. This biomimetic platform, with variable pore dimensions within the same structure, offers size restriction reminiscent of natural proteins. It allows water molecules to selectively transit and prevents bigger hydrated cations from passing through the 2.8 Å pore. Molecular simulations prove that dimeric or multimeric honeycomb aggregates are stable in the membrane and form water pathways through the bilayer. Over time, a significant shift of the upper vs. lower layer occurs initiating new unexpected water permeation events through toroidal pores.
Collapse
Affiliation(s)
- Dmytro Strilets
- Institut Europeen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, 34095, Montpellier, France
| | - Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Arthur Hardiagon
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, F-75005, Paris, France.,Institut de Biologie Physico-Chimique-Fondation Edmond de Rotschild, PSL Research University, Paris, France
| | - Marc Baaden
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, F-75005, Paris, France.,Institut de Biologie Physico-Chimique-Fondation Edmond de Rotschild, PSL Research University, Paris, France
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.,WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192 (Japan), Japan
| | - Mihail Barboiu
- Institut Europeen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, 34095, Montpellier, France
| |
Collapse
|
11
|
Strilets D, Fa S, Hardiagon A, Baaden M, Ogoshi T, Barboiu M. Biomimetic Approach for Highly Selective Artificial Water Channels Based on Tubular Pillar[5]arene Dimers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Dmytro Strilets
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| | - Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Arthur Hardiagon
- CNRS Université de Paris UPR 9080 Laboratoire de Biochimie Théorique 13 rue Pierre et Marie Curie F-75005 Paris France
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rotschild PSL Research University Paris France
| | - Marc Baaden
- CNRS Université de Paris UPR 9080 Laboratoire de Biochimie Théorique 13 rue Pierre et Marie Curie F-75005 Paris France
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rotschild PSL Research University Paris France
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
- WPI Nano Life Science Institute Kanazawa University Kakuma-machi Kanazawa 920-1192 (Japan) Japan
| | - Mihail Barboiu
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| |
Collapse
|
12
|
Hadar M, Kaizerman-Kane D, Zafrani Y, Cohen Y. Temperature-Dependent and pH-Responsive Pillar[5]arene-Based Complexes and Hydrogen-Bond-Based Supramolecular Pentagonal Boxes in Water. Chemistry 2020; 26:11250-11255. [PMID: 32259332 DOI: 10.1002/chem.202000972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Indexed: 01/02/2023]
Abstract
Supramolecular systems in water are of paramount importance and those based on hydrogen bonds are both intriguing and scarce. Here, after studying the peculiar host-guest complexes formed between per-dimethylamino-pillar[5]arene (1) and the bis-sulfonates 2 a-c, we describe the formation of the first hydrogen-bond-based supramolecular pentagonal boxes (SPBs), which are stable in water. These pH-responsive SPBs are constructed from 1 as a body, benzene polycarboxylic acids 3 a,b as lid compounds, and 2 a-c as guests. We demonstrate that encapsulation of 2 a-c in pillar[5]arene 1 and in the highly stable water-soluble SPBs, that is, 1(3 a)2 and 1(3 b)2 , is both temperature and pH dependent and, quite interestingly, depends, on the nature of the lid compounds used for capping the boxes even at high pH. We also highlight the difference in the 1 H NMR characteristics of 2 b and 2 c in the cavity of 1 and the SPBs.
Collapse
Affiliation(s)
- Maya Hadar
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Dana Kaizerman-Kane
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Yossi Zafrani
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona, 74000, Israel
| | - Yoram Cohen
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| |
Collapse
|
13
|
He J, Zhang Y, Hu J, Li Y, Zhang Q, Qu W, Yao H, Wei T, Lin Q. Novel fluorescent supramolecular polymer metallogel based on Al
3+
coordinated cross‐linking of quinoline functionalized‐ pillar[5]arene act as multi‐stimuli‐responsive materials. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jun‐Xia He
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou Gansu 730070 P. R. China
| | - You‐Ming Zhang
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou Gansu 730070 P. R. China
- Natural Energy Research Institute Lanzhou Gansu 730046 P. R. China
| | - Jian‐Peng Hu
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Ying‐Jie Li
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Qi Zhang
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Wen‐Juan Qu
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Hong Yao
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Tai‐Bao Wei
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Qi Lin
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou Gansu 730070 P. R. China
| |
Collapse
|
14
|
Ultrasensitive electrochemical sensing of dopamine by using dihydroxylatopillar[5]arene-modified gold nanoparticles and anionic pillar[5]arene-functionalized graphitic carbon nitride. Mikrochim Acta 2019; 186:703. [DOI: 10.1007/s00604-019-3869-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/20/2019] [Indexed: 11/26/2022]
|
15
|
Mrinalini M, Prasanthkumar S. Recent Advances on Stimuli‐Responsive Smart Materials and their Applications. Chempluschem 2019; 84:1103-1121. [DOI: 10.1002/cplu.201900365] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/25/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Madoori Mrinalini
- Polymers & Functional Materials DivisionCSIR-Indian Institute of Chemical Technology (IICT) Tarnaka Hyderabad- 500007, Telangana India
- Academy of Scientific and Innovation Research (AcSIR) Kamla Nehru Nagar, Ghaziabad Uttar Pradesh 201002 India
| | - Seelam Prasanthkumar
- Polymers & Functional Materials DivisionCSIR-Indian Institute of Chemical Technology (IICT) Tarnaka Hyderabad- 500007, Telangana India
- Academy of Scientific and Innovation Research (AcSIR) Kamla Nehru Nagar, Ghaziabad Uttar Pradesh 201002 India
| |
Collapse
|
16
|
Lin Y, Lu Q, Song F, Yu L, Mechler AK, Schlögl R, Heumann S. Oxygen Evolution Reaction at Carbon Edge Sites: Investigation of Activity Evolution and Structure-Function Relationships with Polycyclic Aromatic Hydrocarbons. Angew Chem Int Ed Engl 2019; 58:8917-8921. [PMID: 30985974 PMCID: PMC6618266 DOI: 10.1002/anie.201902884] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/09/2019] [Indexed: 11/07/2022]
Abstract
The abundance of available surface chemical information and edge structures of carbon materials have attracted tremendous interest in catalysis. For the oxygen evolution reaction (OER), the edge effects of carbon materials have rarely been studied in detail because of the complexity of various coexisting edge configurations and the controversy between carbon corrosion and carbon catalysis. Herein, the exact roles of common carbon active edge sites in the OER were interrogated using polycyclic aromatic hydrocarbons (PAHs) with designated configurations (zigzag and armchair) as model probe molecules, with a focus on structure-function relationships. Zigzag configurations of PAHs showed high activity for the OER while also showing a good stability at a reasonable potential. They show a TOF value of 0.276 s-1 in 0.1 m KOH. The catalytic activity of carbon edge sites was further effectively regulated by extending the π conjugation structure at a molecular level.
Collapse
Affiliation(s)
- Yangming Lin
- Max Planck Institute for Chemical Energy ConversionStiftstrasse 34–36Mülheim an der Ruhr45470Germany
| | - Qing Lu
- Max Planck Institute for Chemical Energy ConversionStiftstrasse 34–36Mülheim an der Ruhr45470Germany
| | - Feihong Song
- Max Planck Institute for Chemical Energy ConversionStiftstrasse 34–36Mülheim an der Ruhr45470Germany
| | - Linhui Yu
- Max Planck Institute for Chemical Energy ConversionStiftstrasse 34–36Mülheim an der Ruhr45470Germany
| | - Anna K. Mechler
- Max Planck Institute for Chemical Energy ConversionStiftstrasse 34–36Mülheim an der Ruhr45470Germany
| | - Robert Schlögl
- Max Planck Institute for Chemical Energy ConversionStiftstrasse 34–36Mülheim an der Ruhr45470Germany
- Department of Inorganic ChemistryFritz Haber Institute of the Max Planck SocietyFaradayweg 4–6Berlin14195Germany
| | - Saskia Heumann
- Max Planck Institute for Chemical Energy ConversionStiftstrasse 34–36Mülheim an der Ruhr45470Germany
| |
Collapse
|