1
|
Ding H, Su B, Jiang D. Recent Advances in Single Cell Analysis by Electrochemiluminescence. ChemistryOpen 2023; 12:e202200113. [PMID: 35880657 PMCID: PMC10152889 DOI: 10.1002/open.202200113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/28/2022] [Indexed: 11/07/2022] Open
Abstract
Understanding biological mechanisms operating in cells is one of the major goals of biology. Since heterogeneity is the fundamental property of cellular systems, single cell measurements can provide more accurate information about the composition, dynamics, and regulatory circuits of cells than population-averaged assays. Electrochemiluminescence (ECL), the light emission triggered by electrochemical reactions, is an emerging approach for single cell analysis. Numerous analytes, ranging from small biomolecules such as glucose and cholesterol, proteins and nucleic acids to subcellular structures, have been determined in single cells by ECL, which yields new insights into cellular functions. This review aims to provide an overview of research progress on ECL principles and systems for single cell analysis in recent years. The ECL reaction mechanisms are briefly introduced, and then the advances and representative works in ECL single cell analysis are summarized. Finally, outlooks and challenges in this field are addressed.
Collapse
Affiliation(s)
- Hao Ding
- State Key Laboratory of Analytical Chemistry for Life ScienceChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing UniversityNanjingJiangsu210023China
| | - Bin Su
- Institute of Analytical ChemistryDepartment of ChemistryZhejiang UniversityHangzhouZhejiang310058China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life ScienceChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing UniversityNanjingJiangsu210023China
| |
Collapse
|
2
|
Willis OG, Petri F, Pescitelli G, Pucci A, Cavalli E, Mandoli A, Zinna F, Di Bari L. Efficient 1400-1600 nm Circularly Polarized Luminescence from a Tuned Chiral Erbium Complex. Angew Chem Int Ed Engl 2022; 61:e202208326. [PMID: 35754002 PMCID: PMC9545264 DOI: 10.1002/anie.202208326] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Indexed: 11/30/2022]
Abstract
Novel chiral Er complexes based on both enantiomers of extended i PrPyBox (2,6-Bis[4-isopropyl-4,5-dihydrooxazol-2-yl)]pyridine) show strong near-infrared circularly polarized luminescence (CPL) within the 1400 to 1600 nm spectral region under 450 nm irradiation. CPL activity in this region, despite being particularly rare, would open the way to potential applications in the domain, e.g., of fiber-optic telecommunications and free-space long-distance optical communications employing circularly polarized light. Moreover, the long wavelength excitation is advantageous for applications in the field of (circularly polarized) microscopy and bioimaging.
Collapse
Affiliation(s)
- Oliver G. Willis
- Department of Chemistry and Industrial ChemistryUniversity of Pisavia Moruzzi, 1356126PisaItaly
| | - Filippo Petri
- Department of Chemistry and Industrial ChemistryUniversity of Pisavia Moruzzi, 1356126PisaItaly
| | - Gennaro Pescitelli
- Department of Chemistry and Industrial ChemistryUniversity of Pisavia Moruzzi, 1356126PisaItaly
| | - Andrea Pucci
- Department of Chemistry and Industrial ChemistryUniversity of Pisavia Moruzzi, 1356126PisaItaly
| | - Enrico Cavalli
- Department of Chemical SciencesLife and Environmental SustainabilityUniversity of ParmaParco Area delle Scienze, 11/a43124ParmaItaly
| | - Alessandro Mandoli
- Department of Chemistry and Industrial ChemistryUniversity of Pisavia Moruzzi, 1356126PisaItaly
| | - Francesco Zinna
- Department of Chemistry and Industrial ChemistryUniversity of Pisavia Moruzzi, 1356126PisaItaly
| | - Lorenzo Di Bari
- Department of Chemistry and Industrial ChemistryUniversity of Pisavia Moruzzi, 1356126PisaItaly
| |
Collapse
|
3
|
Ouyang G, Rühe J, Zhang Y, Lin M, Liu M, Würthner F. Intramolecular Energy and Solvent-Dependent Chirality Transfer within a BINOL-Perylene Hetero-Cyclophane. Angew Chem Int Ed Engl 2022; 61:e202206706. [PMID: 35638322 PMCID: PMC9400993 DOI: 10.1002/anie.202206706] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Indexed: 11/11/2022]
Abstract
Multichromophoric macrocycles and cyclophanes are important supramolecular architectures for the elucidation of interchromophoric interactions originating from precise spatial organization. Herein, by combining an axially chiral binaphthol bisimide (BBI) and a bay-substituted conformationally labile twisted perylene bisimide (PBI) within a cyclophane of well-defined geometry, we report a chiral PBI hetero-cyclophane (BBI-PBI) that shows intramolecular energy and solvent-regulated chirality transfer from the BBI to the PBI subunit. Excellent spectral overlap and spatial arrangement of BBI and PBI lead to efficient excitation energy transfer and subsequent PBI emission with high quantum yield (80-98 %) in various solvents. In contrast, chirality transfer is strongly dependent on the respective solvent as revealed by circular dichroism (CD) spectroscopy. The combination of energy and chirality transfer affords a bright red circularly polarized luminescence (CPL) from the PBI chromophore by excitation of BBI.
Collapse
Affiliation(s)
- Guanghui Ouyang
- Universität WürzburgInstitut für Organische Chemie & Center for Nanosystems ChemistryAm Hubland97074WürzburgGermany
- CAS Key Laboratory of ColloidInterface and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of SciencesZhongGuanCun, North First Street 2100190BeijingChina
| | - Jessica Rühe
- Universität WürzburgInstitut für Organische Chemie & Center for Nanosystems ChemistryAm Hubland97074WürzburgGermany
| | - Yang Zhang
- State Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University350116FuzhouChina
| | - Mei‐Jin Lin
- State Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University350116FuzhouChina
| | - Minghua Liu
- CAS Key Laboratory of ColloidInterface and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of SciencesZhongGuanCun, North First Street 2100190BeijingChina
| | - Frank Würthner
- Universität WürzburgInstitut für Organische Chemie & Center for Nanosystems ChemistryAm Hubland97074WürzburgGermany
| |
Collapse
|
4
|
Du C, Zhu X, Yang C, Liu M. Stacked Reticular Frame Boosted Circularly Polarized Luminescence of Chiral Covalent Organic Frameworks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Cong Du
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Chenchen Yang
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
5
|
Willis OG, Petri F, Pescitelli G, Pucci A, Cavalli E, Mandoli A, Zinna F, Di Bari L. Efficient 1400‐1600 nm Circularly Polarized Luminescence from a Tuned Chiral Erbium Complex. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Oliver George Willis
- Università di Pisa: Universita degli Studi di Pisa Dipartimento di Chimica e Chimica Industriale ITALY
| | - Filippo Petri
- Università di Pisa: Universita degli Studi di Pisa Dipartimento di Chimica e Chimica Industriale ITALY
| | - Gennaro Pescitelli
- Università di Pisa: Universita degli Studi di Pisa Chimica e Chimica Industriale ITALY
| | - Andrea Pucci
- Università di Pisa: Universita degli Studi di Pisa Chimica e Chimica Industriale ITALY
| | - Enrico Cavalli
- University of Parma: Universita degli Studi di Parma Department of Chemical Sciences, Life and Environmental Sustainability ITALY
| | - Alessandro Mandoli
- Università di Pisa: Universita degli Studi di Pisa Chimica e Chimica Industriale ITALY
| | - Francesco Zinna
- Università di Pisa: Universita degli Studi di Pisa Chimica e Chimica Industriale ITALY
| | - Lorenzo Di Bari
- Università di Pisa: Universita degli Studi di Pisa Chimica e Chimica Industriale Via Moruzzi 13 56124 Pisa ITALY
| |
Collapse
|
6
|
Ouyang G, Rühe J, Zhang Y, Lin M, Liu M, Würthner F. Intramolecular Energy and Solvent‐Dependent Chirality Transfer within a BINOL‐Perylene Hetero‐Cyclophane. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Guanghui Ouyang
- Universität Würzburg Institut für Organische Chemie & Center for Nanosystems Chemistry Am Hubland 97074 Würzburg Germany
- CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun, North First Street 2 100190 Beijing China
| | - Jessica Rühe
- Universität Würzburg Institut für Organische Chemie & Center for Nanosystems Chemistry Am Hubland 97074 Würzburg Germany
| | - Yang Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University 350116 Fuzhou China
| | - Mei‐Jin Lin
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University 350116 Fuzhou China
| | - Minghua Liu
- CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun, North First Street 2 100190 Beijing China
| | - Frank Würthner
- Universität Würzburg Institut für Organische Chemie & Center for Nanosystems Chemistry Am Hubland 97074 Würzburg Germany
| |
Collapse
|
7
|
Yang X, Jin X, Zhou L, Duan P, Fan Y, Wang Y. Modulating the Excited State Chirality of Dynamic Chemical Reactions in Chiral Micelles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xuefeng Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology (NCNST) No.11, ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China
- University of Chinese Academy of Sciences No.19(A) Yuquan Road, Shijingshan District 100049 Beijing P. R. China
| | - Xue Jin
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology (NCNST) No.11, ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China
| | - Lili Zhou
- CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences Beijing National Laboratory for Molecular Science Institute of Chemistry Chinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing P. R. China
| | - Pengfei Duan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology (NCNST) No.11, ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China
- University of Chinese Academy of Sciences No.19(A) Yuquan Road, Shijingshan District 100049 Beijing P. R. China
| | - Yaxun Fan
- CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences Beijing National Laboratory for Molecular Science Institute of Chemistry Chinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing P. R. China
| | - Yilin Wang
- CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences Beijing National Laboratory for Molecular Science Institute of Chemistry Chinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing P. R. China
- University of Chinese Academy of Sciences No.19(A) Yuquan Road, Shijingshan District 100049 Beijing P. R. China
| |
Collapse
|
8
|
Xue C, Xu L, Wang H, Li T, Liu M. Circularly Polarized Luminescence (CPL) from Pyrene‐Appended Cyclohexanediamides and Photoirradiation‐Tuned CPL Inversion. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202100255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Chenlu Xue
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 P.R. China
- CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 P.R. China
| | - Lifei Xu
- CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 P.R. China
| | - Han‐Xiao Wang
- CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 P.R. China
| | - Tiesheng Li
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 P.R. China
| | - Minghua Liu
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 P.R. China
- CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 P.R. China
| |
Collapse
|
9
|
Yang X, Jin X, Zhou L, Duan P, Fan Y, Wang Y. Modulating the Excited State Chirality of Dynamic Chemical Reactions in Chiral Micelles. Angew Chem Int Ed Engl 2021; 61:e202115600. [PMID: 34881474 DOI: 10.1002/anie.202115600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Indexed: 11/11/2022]
Abstract
Chirality generation and transfer is not only of critical importance in resolving the origin of biological homochirality, but also is of great significance for exploring the chirality-related functionalities in nanomaterials and supramolecular systems. Although modulating the ground state chirality in chiral nanomaterials has been widely demonstrated, it remains a big challenge to steer the excited state chirality (circularly polarized luminescence, CPL). Herein, we present a kind of chiral spherical micelles constructed by chiral cationic gemini surfactants, whose surfaces and cavities could co-assemble with hydrophilic and hydrophobic emitters concurrently. Subsequently, the hydrophilic and hydrophobic emitters could be endowed with CPL activity in the aqueous phase. Additionally, the cavities of such micelles can be regarded as the powerful chiral confined space, which could effectively modulate the excited state chirality of dynamic chemical reactions, enabling color-adjustable CPL emission.
Collapse
Affiliation(s)
- Xuefeng Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST) No.11, ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, 100049, Beijing, P. R. China
| | - Xue Jin
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST) No.11, ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - Lili Zhou
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, 100190, Beijing, P. R. China
| | - Pengfei Duan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST) No.11, ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, 100049, Beijing, P. R. China
| | - Yaxun Fan
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, 100190, Beijing, P. R. China
| | - Yilin Wang
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, 100190, Beijing, P. R. China.,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, 100049, Beijing, P. R. China
| |
Collapse
|
10
|
Du C, Zhu X, Yang C, Liu M. Stacked Reticular Frame Boosted Circularly Polarized Luminescence of Chiral Covalent Organic Frameworks. Angew Chem Int Ed Engl 2021; 61:e202113979. [PMID: 34693602 DOI: 10.1002/anie.202113979] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Indexed: 12/22/2022]
Abstract
Chiral covalent organic frameworks (COFs) with circularly polarized luminescence (CPL) are intriguing as advanced chiroptical materials but have not been reported to date. We constructed chiroptical COF materials with CPL activity through the convenient Knoevenagel condensation of formyl-functionalized axially chiral linkers and C3-symmetric 1,3,5-benzenetriacetonitrile. Remarkably, the as-prepared chiral COFs showed high absorption and luminescent dissymmetric factors up to 0.02 (gabs ) and 0.04 (glum ), respectively. In contrast, the branched chiral polymers from the same starting monomers were CPL silent. Structural and spectral characterization revealed that the reticular frame was indispensable for CPL generation via confined chirality transfer. Moreover, reticular stacking boosted the CPL performance significantly due to the interlayer restriction of frame. This work demonstrates the first example of a CPL-active COF and provides insight into CPL generation through covalent reticular chemistry, which will play a constructive role in the future design of high-performance CPL materials.
Collapse
Affiliation(s)
- Cong Du
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, ZhongGuanCun North First Street 2, Beijing, 100190, China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, ZhongGuanCun North First Street 2, Beijing, 100190, China
| | - Chenchen Yang
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, ZhongGuanCun North First Street 2, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, ZhongGuanCun North First Street 2, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
11
|
Hu S, Hu L, Zhu X, Wang Y, Liu M. Chiral V-shaped Pyrenes: Hexagonal Packing, Superhelix, and Amplified Chiroptical Performance. Angew Chem Int Ed Engl 2021; 60:19451-19457. [PMID: 34196488 DOI: 10.1002/anie.202107842] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 06/29/2021] [Indexed: 12/14/2022]
Abstract
Here, we designed symmetric and dissymmetric chiral V-shaped pyrenes by linking achiral pyrenes to trans-1,2-cyclohexane diamine scaffolds with varied spacers to investigate their circular dichroism (CD) and circularly polarized excimer emission (CPEE). In molecular solution, the symmetric V-shaped molecules (P1, P2, P3) displayed spacer-dependent CD and CPEE originating from the intramolecular excimers while the dissymmetric V-shaped B was silent in CD and CPEE. Upon self-assembly, the chiral V-shaped conformation guided a helical hexagonal packing. Notably, P1 self-assembled into delicate superhelices with optimum chiroptical activities and the largest gCD for pyrene derivatives to date. The dissymmetric B formed two distinct hexagonal aggregates as twists and rectangular nanotubes with greatly amplified CPEE. This work demonstrates unprecedented hexagonal superhelices from chiral V-shaped scaffolds and provides a deep insight into the relationship between molecular conformation, supramolecular architectures, and their chiroptical performance.
Collapse
Affiliation(s)
- Song Hu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, ZhongGuanCun North First Street 2, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liangyu Hu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, ZhongGuanCun North First Street 2, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, ZhongGuanCun North First Street 2, Beijing, 100190, China
| | - Yuan Wang
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, ZhongGuanCun North First Street 2, Beijing, 100190, China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, ZhongGuanCun North First Street 2, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
12
|
Hu S, Hu L, Zhu X, Wang Y, Liu M. Chiral V‐shaped Pyrenes: Hexagonal Packing, Superhelix, and Amplified Chiroptical Performance. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107842] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Song Hu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Liangyu Hu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Yuan Wang
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
13
|
Han D, Goudeau B, Manojlovic D, Jiang D, Fang D, Sojic N. Electrochemiluminescence Loss in Photobleaching. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Dongni Han
- University of Bordeaux Bordeaux INP ISM, UMR CNRS 5255 33607 Pessac France
- School of Pharmacy and Key Laboratory of Targeted Intervention of Cardiovascular Disease Collaborative Innovation Center for Cardiovascular Disease Translational Medicine Nanjing Medical University Nanjing Jiangsu 211126 China
| | - Bertrand Goudeau
- University of Bordeaux Bordeaux INP ISM, UMR CNRS 5255 33607 Pessac France
| | - Dragan Manojlovic
- Department of Chemistry South Ural State University Chelyabinsk 454080 Russian Federation
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life and School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210093 China
| | - Danjun Fang
- School of Pharmacy and Key Laboratory of Targeted Intervention of Cardiovascular Disease Collaborative Innovation Center for Cardiovascular Disease Translational Medicine Nanjing Medical University Nanjing Jiangsu 211126 China
| | - Neso Sojic
- University of Bordeaux Bordeaux INP ISM, UMR CNRS 5255 33607 Pessac France
- Department of Chemistry South Ural State University Chelyabinsk 454080 Russian Federation
| |
Collapse
|
14
|
Han D, Goudeau B, Manojlovic D, Jiang D, Fang D, Sojic N. Electrochemiluminescence Loss in Photobleaching. Angew Chem Int Ed Engl 2021; 60:7686-7690. [PMID: 33410245 DOI: 10.1002/anie.202015030] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/04/2020] [Indexed: 12/11/2022]
Abstract
The effects of photobleaching on electrochemiluminescence (ECL) was investigated for the first time. The plasma membrane of Chinese Hamster Ovary (CHO) cells was labeled with a [Ru(bpy)3 ]2+ derivative. Selected regions of the fixed cells were photobleached using the confocal mode with sequential stepwise illumination or cumulatively and they were imaged by both ECL and photoluminescence (PL). ECL was generated with a model sacrificial coreactant, tri-n-propylamine. ECL microscopy of the photobleached regions shows lower ECL emission. We demonstrate a linear correlation between the ECL decrease and the PL loss due to the photobleaching of the labels immobilized on the CHO membranes. The presented strategy provides valuable information on the fundamentals of the ECL excited state and opens new opportunities for exploring cellular membranes by combining ECL microscopy with photobleaching techniques such as fluorescence recovery after photobleaching (FRAP) or fluorescence loss in photobleaching (FLIP) methods.
Collapse
Affiliation(s)
- Dongni Han
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607, Pessac, France.,School of Pharmacy and Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211126, China
| | - Bertrand Goudeau
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607, Pessac, France
| | - Dragan Manojlovic
- Department of Chemistry, South Ural State University, Chelyabinsk, 454080, Russian Federation
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Danjun Fang
- School of Pharmacy and Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211126, China
| | - Neso Sojic
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607, Pessac, France.,Department of Chemistry, South Ural State University, Chelyabinsk, 454080, Russian Federation
| |
Collapse
|
15
|
Arrico L, Di Bari L, Zinna F. Quantifying the Overall Efficiency of Circularly Polarized Emitters. Chemistry 2020; 27:2920-2934. [DOI: 10.1002/chem.202002791] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Lorenzo Arrico
- Dipartimento di Chimica e Chimica Industriale Università di Pisa Via Moruzzi 13 56124 Pisa Italy
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale Università di Pisa Via Moruzzi 13 56124 Pisa Italy
| | - Francesco Zinna
- Dipartimento di Chimica e Chimica Industriale Università di Pisa Via Moruzzi 13 56124 Pisa Italy
| |
Collapse
|
16
|
Maeda C, Nomoto S, Takaishi K, Ema T. Aggregation-Induced Circularly Polarized Luminescence from Boron Complexes with a Carbazolyl Schiff Base. Chemistry 2020; 26:13016-13021. [PMID: 32297393 DOI: 10.1002/chem.202001463] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Indexed: 12/21/2022]
Abstract
A variety of carbazolyl-appended Schiff bases were readily synthesized from 1-formylcarbazoles and aniline derivatives. Boron complexation of the resulting ligands allowed for facile preparation of new carbazole-based BODIPY analogues showing solid-state fluorescence. Furthermore, some dyes were converted into chiral compounds through the Et2 AlCl-mediated incorporation of a binaphthyl unit. The chiral dyes showed aggregation-induced fluorescence and circularly polarized luminescence (CPL) with the ΦF and glum of up to 0.22 and -3.5×10-3 , respectively, in the solid state. The solid-state fluorescence and CPL were well characterized by the crystal packing analyses and DFT calculations.
Collapse
Affiliation(s)
- Chihiro Maeda
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama, 700-8530, Japan
| | - Shuichi Nomoto
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama, 700-8530, Japan
| | - Kazuto Takaishi
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama, 700-8530, Japan
| | - Tadashi Ema
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama, 700-8530, Japan
| |
Collapse
|
17
|
Voci S, Verlhac JB, Polo F, Clermont G, Daniel J, Castet F, Blanchard-Desce M, Sojic N. Photophysics, Electrochemistry and Efficient Electrochemiluminescence of Trigonal Truxene-Core Dyes. Chemistry 2020; 26:8407-8416. [PMID: 32430923 DOI: 10.1002/chem.202000474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/26/2020] [Indexed: 01/08/2023]
Abstract
We synthesized and characterized a series of dyes built from a spirofluorene or truxene core. The quadrupolar spirofluorene system is the initial building unit for the design and preparation of more complex star-shaped dyes consisting of a truxene core bearing three di- or triphenylamine moieties with or without a thiophene connector. Their photophysical, electrochemical, and electrochemiluminescence (ECL) properties were first investigated in solution. Structure/activity relationships were derived and rationalized by comparing the quadrupolar system and trigonal truxene-core derivatives using computational studies. The photophysical and redox characteristics are drastically tuned by the introduction of a thiophene bridge and electron-donor substituents at their terminal branches. These comparative studies show the essential role of the stability of both radical cations and anions to obtain efficient ECL dyes. The stabilization of the radicals is directly related to the charge delocalization due to the π-conjugation by the thiophene bridge. The brightest ECL is achieved by annihilation and coreactant (benzoyl peroxide) pathways with the blue-emitting truxene dye, which is 2- and 4.5-times greater than that of the quadrupolar compound and reference [Ru(bpy)3 ]2+ emitter, respectively. Such an extensive study on these extended π-conjugated molecules presenting different core structures may guide the design and synthesis of new ECL dyes with a strong efficiency.
Collapse
Affiliation(s)
- Silvia Voci
- Bordeaux INP, ISM, UMR CNRS 5255, University of Bordeaux, 33607, Pessac, France
| | | | - Federico Polo
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172, Venice, Italy
| | - Guillaume Clermont
- Bordeaux INP, ISM, UMR CNRS 5255, University of Bordeaux, 33607, Pessac, France
| | - Jonathan Daniel
- Bordeaux INP, ISM, UMR CNRS 5255, University of Bordeaux, 33607, Pessac, France
| | - Frédéric Castet
- Bordeaux INP, ISM, UMR CNRS 5255, University of Bordeaux, 33607, Pessac, France
| | | | - Neso Sojic
- Bordeaux INP, ISM, UMR CNRS 5255, University of Bordeaux, 33607, Pessac, France
| |
Collapse
|
18
|
Guo W, Ding H, Zhou P, Wang Y, Su B. Electrochemiluminescence Waveguide in Single Crystalline Molecular Wires. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915984] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Weiliang Guo
- Institute of Analytical ChemistryDepartment of ChemistryZhejiang University Hangzhou 310058 China
| | - Hao Ding
- Institute of Analytical ChemistryDepartment of ChemistryZhejiang University Hangzhou 310058 China
| | - Ping Zhou
- Institute of Analytical ChemistryDepartment of ChemistryZhejiang University Hangzhou 310058 China
| | - Yafeng Wang
- Institute of Analytical ChemistryDepartment of ChemistryZhejiang University Hangzhou 310058 China
| | - Bin Su
- Institute of Analytical ChemistryDepartment of ChemistryZhejiang University Hangzhou 310058 China
| |
Collapse
|
19
|
Jin Z, Zhu X, Wang N, Li Y, Ju H, Lei J. Electroactive Metal–Organic Frameworks as Emitters for Self‐Enhanced Electrochemiluminescence in Aqueous Medium. Angew Chem Int Ed Engl 2020; 59:10446-10450. [DOI: 10.1002/anie.202002713] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/18/2020] [Indexed: 01/26/2023]
Affiliation(s)
- Zhongchao Jin
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Xiaorong Zhu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials Jiangsu Key Laboratory of New Power Batteries School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Ningning Wang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yafei Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials Jiangsu Key Laboratory of New Power Batteries School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
20
|
Jin Z, Zhu X, Wang N, Li Y, Ju H, Lei J. Electroactive Metal–Organic Frameworks as Emitters for Self‐Enhanced Electrochemiluminescence in Aqueous Medium. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002713] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhongchao Jin
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Xiaorong Zhu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials Jiangsu Key Laboratory of New Power Batteries School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Ningning Wang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yafei Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials Jiangsu Key Laboratory of New Power Batteries School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
21
|
Ding H, Guo W, Su B. Electrochemiluminescence Single‐Cell Analysis: Intensity‐ and Imaging‐Based Methods. Chempluschem 2020; 85:725-733. [DOI: 10.1002/cplu.202000145] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/25/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Hao Ding
- Institute of Analytical ChemistryDepartment of ChemistryZhejiang University Hangzhou 310058 P. R. China
| | - Weiliang Guo
- Institute of Analytical ChemistryDepartment of ChemistryZhejiang University Hangzhou 310058 P. R. China
| | - Bin Su
- Institute of Analytical ChemistryDepartment of ChemistryZhejiang University Hangzhou 310058 P. R. China
| |
Collapse
|
22
|
Maeda C, Nagahata K, Shirakawa T, Ema T. Azahelicene‐Fused BODIPY Analogues Showing Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001186] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Chihiro Maeda
- Division of Applied Chemistry Graduate School of Natural Science and Technology Okayama University Tsushima Okayama 700-8530 Japan
| | - Keiji Nagahata
- Division of Applied Chemistry Graduate School of Natural Science and Technology Okayama University Tsushima Okayama 700-8530 Japan
| | - Takuma Shirakawa
- Division of Applied Chemistry Graduate School of Natural Science and Technology Okayama University Tsushima Okayama 700-8530 Japan
| | - Tadashi Ema
- Division of Applied Chemistry Graduate School of Natural Science and Technology Okayama University Tsushima Okayama 700-8530 Japan
| |
Collapse
|
23
|
Maeda C, Nagahata K, Shirakawa T, Ema T. Azahelicene-Fused BODIPY Analogues Showing Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2020; 59:7813-7817. [PMID: 32107825 DOI: 10.1002/anie.202001186] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/18/2020] [Indexed: 12/23/2022]
Abstract
Helical carbazole-based BODIPY analogues were readily synthesized via aza[7]helicenes. The structures of azahelicene-incorporated BF2 dyes were elucidated by x-ray diffraction analysis. DFT calculations revealed that the π-conjugated system expanded from the helicene moiety to the BODIPY framework. The azahelicene-fused boron complexes showed the Cotton effects and the circularly polarized luminescence (CPL) in the visible region. Furthermore, an axially chiral binaphthyl group was attached to the helically chiral dyes, which enhanced the chiroptical properties.
Collapse
Affiliation(s)
- Chihiro Maeda
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama, 700-8530, Japan
| | - Keiji Nagahata
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama, 700-8530, Japan
| | - Takuma Shirakawa
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama, 700-8530, Japan
| | - Tadashi Ema
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama, 700-8530, Japan
| |
Collapse
|
24
|
Guo W, Ding H, Zhou P, Wang Y, Su B. Electrochemiluminescence Waveguide in Single Crystalline Molecular Wires. Angew Chem Int Ed Engl 2020; 59:6745-6749. [PMID: 31944544 DOI: 10.1002/anie.201915984] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/05/2020] [Indexed: 12/16/2022]
Abstract
Here we report the first observation of active waveguide of electrochemiluminescence (ECL) in single crystalline molecular wires self-assembled from cyclometalated iridium(III) complexes, namely tris(1-phenylisoquinoline-C2 , N) (Ir(piq)3 ). Under dark conditions, the molecular wires deposited on the electrode surface can act as both ECL emitters and active waveguides. As revealed by ECL microscopy, they exhibit the typical characteristics of optical waveguides, transmitting ECL and generating much brighter ECL emission at their terminals. Moreover, self-generated ECL can be confined inside the molecular wire and propagates along the longitudinal direction as far as ≈100 μm to the terminal out of touch with the electrode. Therefore, this one-dimensional crystalline molecular wire-based waveguide offers the opportunity to switch the electrochemically generated ECL to remote light emission in non-conductive regions and is promising for contactless electrochemical analysis and study of (bio)chemical systems.
Collapse
Affiliation(s)
- Weiliang Guo
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Hao Ding
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Ping Zhou
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Yafeng Wang
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
25
|
Han Q, Wang C, Li Z, Wu J, Liu PK, Mo F, Fu Y. Multifunctional Zinc Oxide Promotes Electrochemiluminescence of Porphyrin Aggregates for Ultrasensitive Detection of Copper Ion. Anal Chem 2020; 92:3324-3331. [DOI: 10.1021/acs.analchem.9b05262] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Qian Han
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
- Laboratory of Environment Change and Ecological Construction of Hebei Province, College of Resources and Environment Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Cun Wang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China
| | - Zhuozhe Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jingling Wu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ping kun Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Fangjing Mo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yingzi Fu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
26
|
Lee S, Kim KY, Jung SH, Lee JH, Yamada M, Sethy R, Kawai T, Jung JH. Finely Controlled Circularly Polarized Luminescence of a Mechano‐Responsive Supramolecular Polymer. Angew Chem Int Ed Engl 2019; 58:18878-18882. [DOI: 10.1002/anie.201911380] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Seonae Lee
- Department of Chemistry and Research Institute of Natural SciencesGyeongsang National University Jinju 52828 Republic of Korea
| | - Ka Young Kim
- Department of Chemistry and Research Institute of Natural SciencesGyeongsang National University Jinju 52828 Republic of Korea
| | - Sung Ho Jung
- Department of Liberal ArtsGyeongnam National University of Science and Technology(GNTECH) Jinju Republic of Korea
| | - Ji Ha Lee
- Department of Chemistry and BiochemistryUniversity of Kitakyushu Hibikino Kitakyushu 808-0135 Japan
| | - Mihoko Yamada
- Division of Materials ScienceNara Institute of Science and Technology, NAIST 8916-5 Takayama Ikoma Nara 630-0192 Japan
| | - Ramarani Sethy
- Division of Materials ScienceNara Institute of Science and Technology, NAIST 8916-5 Takayama Ikoma Nara 630-0192 Japan
| | - Tsuyoshi Kawai
- Division of Materials ScienceNara Institute of Science and Technology, NAIST 8916-5 Takayama Ikoma Nara 630-0192 Japan
| | - Jong Hwa Jung
- Department of Chemistry and Research Institute of Natural SciencesGyeongsang National University Jinju 52828 Republic of Korea
| |
Collapse
|
27
|
Lee S, Kim KY, Jung SH, Lee JH, Yamada M, Sethy R, Kawai T, Jung JH. Finely Controlled Circularly Polarized Luminescence of a Mechano‐Responsive Supramolecular Polymer. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911380] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Seonae Lee
- Department of Chemistry and Research Institute of Natural SciencesGyeongsang National University Jinju 52828 Republic of Korea
| | - Ka Young Kim
- Department of Chemistry and Research Institute of Natural SciencesGyeongsang National University Jinju 52828 Republic of Korea
| | - Sung Ho Jung
- Department of Liberal ArtsGyeongnam National University of Science and Technology(GNTECH) Jinju Republic of Korea
| | - Ji Ha Lee
- Department of Chemistry and BiochemistryUniversity of Kitakyushu Hibikino Kitakyushu 808-0135 Japan
| | - Mihoko Yamada
- Division of Materials ScienceNara Institute of Science and Technology, NAIST 8916-5 Takayama Ikoma Nara 630-0192 Japan
| | - Ramarani Sethy
- Division of Materials ScienceNara Institute of Science and Technology, NAIST 8916-5 Takayama Ikoma Nara 630-0192 Japan
| | - Tsuyoshi Kawai
- Division of Materials ScienceNara Institute of Science and Technology, NAIST 8916-5 Takayama Ikoma Nara 630-0192 Japan
| | - Jong Hwa Jung
- Department of Chemistry and Research Institute of Natural SciencesGyeongsang National University Jinju 52828 Republic of Korea
| |
Collapse
|