1
|
Han J, Fujikawa S, Kimizuka N. Living Hybrid Exciton Materials: Enhanced Fluorescence and Chiroptical Properties in Living Supramolecular Polymers with Strong Frenkel/Charge-Transfer Exciton Coupling. Angew Chem Int Ed Engl 2024:e202410431. [PMID: 38987230 DOI: 10.1002/anie.202410431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/12/2024]
Abstract
A family of chiral perylene diimides (PDIs) was newly developed as excellent circularly polarized luminescence (CPL) materials. They are asymmetrically derivatized with a double-alkyl-chained L- or D-glutamate unit and a linear or branched alkyl chain. When water is added to the tetrahydrofuran (THF) solution of glutamate-PDI-linear-alkyl chain compounds, kinetically formed H-aggregates are formed in globular nanoparticles (NPs). These NPs undergo spontaneous transformation into thermodynamically stable nanotubes via helical nanostructures, which showed structured broad spectra originating from the strong coupling of delocalized Frenkel excitations (FE) and charge transfer excitations (CTE). Significant enhancement of circular dichroism (CD), fluorescence quantum yield, and circularly polarized luminescence (CPL) with luminescence dissymmetry factor (glum) are observed during the transformation of NPs to the FE/CTE-coupled helical and tubular structures. This transformation process is significantly accelerated by applying physical stimuli, i.e., ultrasonication or adding helical aggregates as seed crystals, a feature unique to living supramolecular polymerization. Meanwhile, the branched chain-containing PDIs only form H-aggregates and did not show FE/CTE hybrid exciton states with living supramolecular polymerization properties. This study unveils that suitably designed chiral PDI derivatives show FE/CTE coupling accompanied by high fluorescence quantum yields, enhanced chiroptical properties, and supramolecular living polymerization characteristics.
Collapse
Affiliation(s)
- Jianlei Han
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, 819-0395, Japan
| | - Shigenori Fujikawa
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, 819-0395, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, 819-0395, Japan
- Research Center for Negative Emission Technologies, Kyushu University, Fukuoka, 819-0395, Japan
| | - Nobuo Kimizuka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, 819-0395, Japan
- Research Center for Negative Emission Technologies, Kyushu University, Fukuoka, 819-0395, Japan
| |
Collapse
|
2
|
Xu J, Guo J, Li S, Yang Y, Lai W, Keoingthong P, Wang S, Zhang L, Dong Q, Zeng Z, Chen Z. Dual Charge Transfer Generated from Stable Mixed-Valence Radical Crystals for Boosting Solar-to-Thermal Conversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2300980. [PMID: 37144542 PMCID: PMC10375089 DOI: 10.1002/advs.202300980] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/11/2023] [Indexed: 05/06/2023]
Abstract
Realizing dual charge transfer (CT) based on stable organic radicals in one system is a long-sought goal, however, remains challenging. In this work, a stable mixed-valence radical crystal is designed via a surfactant-assisted method, namely TTF-(TTF+• )2 -RC (where TTF = tetrathiafulvalene), containing dual CT interactions. The solubilization of surfactants enables successful co-crystallization of mixed-valence TTF molecules with different polarity in aqueous solutions. Short intermolecular distances between adjacent TTF moieties within TTF-(TTF+• )2 -RC facilitate both inter-valence CT (IVCT) between neutral TTF and TTF+• , and inter-radical CT (IRCT) between two TTF+• in radical π-dimer, which are confirmed by single-crystal X-ray diffraction, solid-state absorption, electron spin resonance measurements, and DFT calculations. Moreover, TTF-(TTF+• )2 -RC reveals an open-shell singlet diradical ground state with the antiferromagnetic coupling of 2J = -657 cm-1 and an unprecedented temperature-dependent magnetic property, manifesting the main monoradical characters of IVCT at 113-203 K while the spin-spin interactions in radical dimers of IRCT are predominant at 263-353 K. Notably, dual CT characters endow TTF-(TTF+• )2 -RC with strong light absorption over the full solar spectrum and outstanding stability. As a result, TTF-(TTF+• )2 -RC exhibits significantly enhanced photothermal property, an increase of 46.6 °C within 180 s upon one-sun illumination.
Collapse
Affiliation(s)
- Jieqiong Xu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Jing Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Shengkai Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Yanxia Yang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Weiming Lai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Phouphien Keoingthong
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Shen Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Liang Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Qian Dong
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Zhuo Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| |
Collapse
|
3
|
Zhang Y, Yu W, Li H, Zheng W, Cheng Y. Induced CPL-Active Materials Based on Chiral Supramolecular Co-Assemblies. Chemistry 2023; 29:e202204039. [PMID: 36691189 DOI: 10.1002/chem.202204039] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/25/2023]
Abstract
Circularly polarized luminescence (CPL) has attracted much interest due to its potential applications on chiral photonic techniques and optoelectronic materials science. As known, dissymmetry factor (gem ) of CPL is one essential factor for evaluating the features of CPL-active materials. Much attention has focused on how to increase the gem value, which is one of the most important issues for CPL practical applications. Recently, more and more works have demonstrated that chiral supramolecular could provide the significant strategy to improve the gem value through the orderly helical superstructure of chiral building blocks. Normally, this kind of chiral supramolecular assembly process can be accompanied by chirality transfer and induction mechanism, which can promote the amplification effect on the induced CPL of achiral dyes. In this review, we fully summarized recent advances on the induced CPL-active materials of chiral supramolecular co-assemblies, their applications in circularly polarized organic light-emitting diodes (CP-OLEDs) and current challenges.
Collapse
Affiliation(s)
- Yuxia Zhang
- Nanjing University, State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing, 210023, P. R. China.,Nanjing University of Posts and Telecommunications, Key Laboratory for Organic Electronics &, Information Displays (KLOEID) and, Institute of Advanced Materials, National Synergistic Innovation Center for, Advanced Materials (SICAM), Nanjing, 210023, P. R. China
| | - Wenting Yu
- Nanjing University, State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing, 210023, P. R. China
| | - Hang Li
- Nanjing University, State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing, 210023, P. R. China
| | - Wenhua Zheng
- Nanjing University, State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing, 210023, P. R. China
| | - Yixiang Cheng
- Nanjing University, State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing, 210023, P. R. China
| |
Collapse
|
4
|
Gao Y, Wang L, Ma X, Jin R, Kang C, Gao L. Chiral Naphthalenediimides with High-Efficiency Fluorescence and Circularly Polarized Luminescence in the Solid State for the Application in Organic Optoelectronics. Chemistry 2023; 29:e202202476. [PMID: 36214724 DOI: 10.1002/chem.202202476] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Indexed: 11/05/2022]
Abstract
Naphthalenediimides (NDIs) have been extensively studied due to their tunable luminescent properties. However, generally, the monomers or aggregates of non-core substituted NDIs exhibit low fluorescence quantum yields (ΦFL <10 %) in the solid state, which limit their applications as light-emitting materials and render their chiral species unsuitable for circularly polarized luminescence (CPL). Herein, a series of non-core substituted chiral NDIs that exhibit high luminous efficiencies (ΦFL up to 56.8 % for racemate and 36.5 % for enantiomer) and a strong CPL behavior in the solid state is reported. These significant improvements are attributed to the unique molecular conformation of the chiral NDIs and the formation of distinctive discrete dimers. The structures of the NDIs were significantly simpler and more accessible than those of other NDIs. The findings evidence that non-core substituted NDIs can exhibit strong fluorescence in the solid state and provide a new pathway to improve photophysical properties of NDIs.
Collapse
Affiliation(s)
- Yuping Gao
- Laboratory of Polymer Composite and Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China.,Current address: College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Liangpeng Wang
- Laboratory of Polymer Composite and Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xiaoye Ma
- Laboratory of Polymer Composite and Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Rizhe Jin
- Laboratory of Polymer Composite and Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Chuanqing Kang
- Laboratory of Polymer Composite and Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Lianxun Gao
- Laboratory of Polymer Composite and Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| |
Collapse
|
5
|
Miyan L, Adam AMA, Refat MS, Alsuhaibani AM. 2-aminopyrimidine-oxalic acid liquid–liquid charge-transfer interactions: Synthesis, spectroscopic characterizations, and the effect of temperature. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Shi Z, Wang Q, Yi J, Zhao C, Chen S, Tian H, Qu D. Encoding Supramolecular Chiral Self‐Assembly with Photo‐Controlled Circularly Polarized Luminescence by Overcrowded Alkene‐Based Bis‐PBI Modulators. Angew Chem Int Ed Engl 2022; 61:e202207405. [DOI: 10.1002/anie.202207405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Zhao‐Tao Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Qian Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Jinhao Yi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Chengxi Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Shao‐Yu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Da‐Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
7
|
Al-Hazmi GH, Hassanien A, Atta A, Refat MS, Saad HA, Shakya S, Adam AMA. Supramolecular charge-transfer complex generated by the interaction between tin(II) 2,3-naphtalocyanine as a donor with DDQ as an acceptor: Spectroscopic studies in solution state and theoretical calculations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Shi ZT, Wang Q, Yi J, Zhao C, Chen SY, Tian H, Qu DH. Encoding Supramolecular Chiral Self‐Assembly with Photo‐Controlled Circularly Polarized Luminescence by Overcrowded Alkene‐Based Bis‐PBI Modulators. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhao-Tao Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboretory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Joint Research Center East China University of Science and Technology CHINA
| | - Qian Wang
- Key Laboretory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center East China University of Science and Technology CHINA
| | - Jinhao Yi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center East China University of Science and Technology CHINA
| | - Chengxi Zhao
- Key Laboretory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Jiont Research Center East China University of Science and Technology CHINA
| | - Shao-Yu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center East China University of Science and Technology CHINA
| | - He Tian
- Key Laboratory for Advanced Materials and Joint Internation Research Laboratory of Precision Chemistry and Molecular Enginering, Feringa Nobel Prize Scientist Joint Research Center East China University of Science and Technology CHINA
| | - Da-Hui Qu
- Key Labs for Advanced Materials Institute of Fine Chemicals, East China University of Science and Technology Meilong Road 130 200237 Shanghai CHINA
| |
Collapse
|
9
|
Gorai T, Lovitt JI, Umadevi D, McManus G, Gunnlaugsson T. Hierarchical supramolecular co-assembly formation employing multi-component light-harvesting charge transfer interactions giving rise to long-wavelength emitting luminescent microspheres. Chem Sci 2022; 13:7805-7813. [PMID: 35865882 PMCID: PMC9258320 DOI: 10.1039/d2sc02097a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/30/2022] [Indexed: 12/19/2022] Open
Abstract
Charge transfer (CT) interaction induced formation of a hierarchical supramolecular assembly has attracted attention due to its wide diversity of structural and functional characteristics. In the present work, we report the generation of green luminescent microspheres from the charge transfer interaction induced co-assembly of a bis-naphthyl dipicolinic amide (DPA) derivative with tetracyanobenzene (TCNB) for the first time. The properties of these self-assemblies were studied both in solution and the solid-state using spectroscopic and a variety of microscopy techniques. The X-ray crystal structure analysis showed a mixed stack arrangement of DPA and TCNB. The molecular orbital and energy level calculations confirm the charge transfer complex formation between DPA and TCNB. Furthermore, energy transfer was observed from the green luminescent CT complex to a red-emitting dye, pyronin Y, in the microsphere matrix, leading to the formation of a light-harvesting tri-component self-assembly.
Collapse
Affiliation(s)
- Tumpa Gorai
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin Dublin 2 Ireland
| | - June I Lovitt
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin Dublin 2 Ireland
- Synthesis and Solid State Pharmaceutical Centre (SSPC) Ireland
| | - Deivasigamani Umadevi
- Department of Chemistry, Indian Institute of Technology Palakkad (IITPKD) Palakkad-678557 Kerala India
| | - Gavin McManus
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin Dublin 2 Ireland
| | - Thorfinnur Gunnlaugsson
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin Dublin 2 Ireland
- Advanced Materials and BioEngineering Research (AMBER) Centre, Trinity College Dublin, The University of Dublin Dublin 2 Ireland
- Synthesis and Solid State Pharmaceutical Centre (SSPC) Ireland
| |
Collapse
|
10
|
The role of natural biological macromolecules: Deoxyribonucleic and ribonucleic acids in the formulation of new stable charge transfer complexes of thiophene Schiff bases for various life applications. Int J Biol Macromol 2021; 193:1572-1586. [PMID: 34743030 DOI: 10.1016/j.ijbiomac.2021.10.220] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 10/02/2021] [Accepted: 10/28/2021] [Indexed: 01/23/2023]
Abstract
The ecofriendly cellulose and gelatin provided sustainable and abundant sugars: d-ribofuranose, and 2-Deoxy-ribofuranose (starting reactants for preparative synthetic green chemistry pathways of charge transfer complexes. The natural available sugars d-ribofuranose, and 2-Deoxy-ribofuranose were obtained from facile hydrolysis of cellulose and gelatin natural macromolecules. Successive, low cost and facile alkaline- and acid hydrolysis of Deoxyribonucleic acid (DNA, from gelatin animal source) and ribonucleic acid (RNA, from cellulose plant source) yield the simple sugars: d-ribofuranose and 2-Deoxy-ribofuranose. Eight optically and biologically active charge transfer complexes were prepared from the reaction of the above sugars efficiently intercalated with two new prepared thiophene Schiff Lewis (electron donors) bases: 2-((2Hydroxybenzylidene) amino)-4, 5, 6, 7-tetrahydrobenzo [b] thiophene-3-carbonitrile (D1, 2-((Furan-2ylmethylene) amino) 4,5,6,7 tetrahydrobenzo [b] thiophene-3-carbonitrile (D2). The chemical structures of these prepared Schiff bases were confirmed using the mass spectra. The successful intercalation of the sugar units with the Lewis bases was ascertained using powder x ray diffraction. The molecular structures of the reaction products were proposed based on FTIR, 1H NMR. The optical activity of charge transfer complexes were confirmed using UV-Vis. Absorption spectroscopy. The surface morphology, microstructures, and particle size of the donors and charge transfer complexes were determined using scanning electron microscopy (SEM). The Lewis bases (D1) and (D2) showed no antimicrobial activity, while their charge transfer complexes showed good antimicrobial activity, suggesting their pharmaceutical and medicinal applications due to the potent biological activity against wide spread microbial microorganisms of Gram positive and Gram positive bacteria as well as some fungal species.
Collapse
|
11
|
Sumsalee P, Abella L, Kasemthaveechok S, Vanthuyne N, Cordier M, Pieters G, Autschbach J, Crassous J, Favereau L. Luminescent Chiral Exciplexes with Sky-Blue and Green Circularly Polarized-Thermally Activated Delayed Fluorescence. Chemistry 2021; 27:16505-16511. [PMID: 34599776 DOI: 10.1002/chem.202102765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Indexed: 11/08/2022]
Abstract
Luminescent exciplexes based on a chiral electron donor and achiral acceptors are reported as a new approach to design circularly polarized (CP) and thermally activated delayed fluorescence (TADF) emitters. This strategy results in rather high CP luminescence (CPL) values with glum up to 7×10-3 , one order of magnitude higher in comparison to the CPL signal recorded for the chiral donor alone (glum ∼7×10-4 ). This increase occurs concomitantly with a CPL sign inversion, as a result of the strong charge-transfer emission character, as experimentally and theoretically rationalized by using a covalent chiral donor-acceptor model. Interestingly, blue, green-yellow and red chiral luminescent exciplexes can be obtained by modifying with the electron accepting character of the achiral unit while keeping the same chiral donor unit. These results bring new (inter)molecular guidelines to obtain simply and efficiently multi-color CP-TADF emitters.
Collapse
Affiliation(s)
| | - Laura Abella
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York, 14260, USA
| | | | - Nicolas Vanthuyne
- Aix Marseille University, CNRS Centrale Marseille, iSm2, 13284, Marseille, France
| | - Marie Cordier
- Univ. Rennes, CNRS, ISCR - UMR 6226, 35000, Rennes, France
| | - Grégory Pieters
- Département Médicaments et Technologies pour la Santé (DMTS), SCBM, Université Paris-Saclay, CEA, INRAE, 91191, Gif-sur-Yvette, France
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York, 14260, USA
| | | | | |
Collapse
|
12
|
Meskers SCJ. Circular Polarization of Luminescence as a Tool To Study Molecular Dynamical Processes. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100154] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Stefan C. J. Meskers
- Molecular Materials and Nanosystems and Institute for Complex Molecular Systems Eindhoven University of Technology P.O. box 513 (STW 4.37) NL 5600 MB Eindhoven Netherlands
| |
Collapse
|
13
|
Zhao J, Xing P. Regulation of Circularly Polarized Luminescence in Multicomponent Supramolecular Coassemblies. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jianjian Zhao
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P.R. China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P.R. China
| |
Collapse
|
14
|
Shen J, Xiao Q, Sun P, Feng J, Xin X, Yu Y, Qi W. Self-Assembled Chiral Phosphorescent Microflowers from Au Nanoclusters with Dual-Mode pH Sensing and Information Encryption. ACS NANO 2021; 15:4947-4955. [PMID: 33629584 DOI: 10.1021/acsnano.0c09766] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The self-assembly of chiral metal nanoclusters into supramolecular chiral aggregates is of interest for developing advanced materials. Herein, we manipulated the self-assembly of Au nanoclusters modified by l-/d-cysteine (l-/d-AuNCs) into ordered microstructures featuring enhanced phosphorescence and optical activities. The formation of these aggregates was driven by synergistic effect of coordination and electrostatic interactions assisted by Cd2+/H+. Detailed structural characterization and theoretical studies confirmed that the compact aggregation structures are essential for the emission enhancement and the chirality amplification of l-/d-AuNCs. Interestingly, upon the formation of microflowers, the emission lifetime was prolonged to 3.34 ms with a switch from fluorescence to phosphorescence induced by aurophilic Au(I)···Au(I) interactions and intensive ligand-to-metal charge transfer (LMCT). Moreover, both the CD and photoluminescence (PL) signals of the microflowers exhibited pH-responsiveness. This dual-mode sensitive platform could be developed as a pH sensor with improved accuracy. Additionally, the pH-responsive photoluminescence ON/OFF switch of the microflowers could be employed for reliable information encryption and decryption. This study provides useful ideas for regulating the self-assembly of nanoclusters to generate desired photophysical properties with potential applications.
Collapse
Affiliation(s)
- Jinglin Shen
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Qianwen Xiao
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Panpan Sun
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jin Feng
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Xia Xin
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - You Yu
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Wei Qi
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| |
Collapse
|
15
|
Huang JC, Ye GM, Yu M, Huang R, Zhao Z, Qin A, Wu ST, Xie Z. Circularly Polarized Luminescence of Achiral Metal-Organic Colloids and Guest Molecules in a Vortex Field. Chemistry 2021; 27:6760-6766. [PMID: 33543548 DOI: 10.1002/chem.202005481] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Indexed: 12/26/2022]
Abstract
Recently, scientists have reported a range of chiral fluorescence materials or chiral composites that can emit circularly polarized luminescence. Herein, two achiral metal-organic colloidal solutions were studied, showing active circularly polarized luminescence, which is observed in vortex stirring. The absolute values for glum are 0.05 and 0.03 and the plus or minus sign of glum depends on the colloidal structure and stirring direction, which make the property easy to manipulate. Further, the host-guest interaction study suggests both electrostatic interactions and coordination bonding may influence the chiroptical property from the colloidal solution to the guest molecule. Rhodamine 6G and its carboxylic acid derivative exhibit good quantum yields and acceptable glum values in the colloidal solution.
Collapse
Affiliation(s)
- Jian-Cai Huang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China.,Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
| | - Guang-Ming Ye
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China.,Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
| | - Maoxing Yu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from, Molecular Aggregates, South China University of Technology, Guangzhou, Guangdong, 510640, P. R. China
| | - Ruishan Huang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from, Molecular Aggregates, South China University of Technology, Guangzhou, Guangdong, 510640, P. R. China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from, Molecular Aggregates, South China University of Technology, Guangzhou, Guangdong, 510640, P. R. China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from, Molecular Aggregates, South China University of Technology, Guangzhou, Guangdong, 510640, P. R. China
| | - Shu-Ting Wu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China.,Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
| | - Zenghong Xie
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China
| |
Collapse
|
16
|
Zhang H, Han J, Jin X, Duan P. Improving the Overall Properties of Circularly Polarized Luminescent Materials Through Arene–Perfluoroarene Interactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014891] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Haowen Zhang
- College of Chemistry Zhengzhou University No.100 Science Avenue Zhengzhou 450001 P. R. China
| | - Jianlei Han
- CAS Center for Excellence in Nanoscience CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology (NCNST), ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China
| | - Xue Jin
- CAS Center for Excellence in Nanoscience CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology (NCNST), ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China
| | - Pengfei Duan
- College of Chemistry Zhengzhou University No.100 Science Avenue Zhengzhou 450001 P. R. China
- CAS Center for Excellence in Nanoscience CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology (NCNST), ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China
- University of Chinese Academy of Sciences No.19(A) Yuquan Road, Shijingshan District Beijing 100049 P. R. China
| |
Collapse
|
17
|
Zhang H, Han J, Jin X, Duan P. Improving the Overall Properties of Circularly Polarized Luminescent Materials Through Arene-Perfluoroarene Interactions. Angew Chem Int Ed Engl 2021; 60:4575-4580. [PMID: 33236479 DOI: 10.1002/anie.202014891] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Indexed: 11/06/2022]
Abstract
A major trade-off in the field of circularly polarized luminescence (CPL) of pure organic materials is that the large luminescence dissymmetry factor (glum ) usually gives rise to the suppression of luminescence efficiency (ΦPL ). Here, a supramolecular self-assembled system, driven by arene-perfluoroarene (AP) interactions of chiral polycyclic aromatic hydrocarbons (PAHs) and octafluoronaphthalene (OFN), is reported to provide a solution to this problem. Two kinds of chiral PAHs based on pyrene and anthracene could co-assemble with OFN in hybrid solvents to form long-range-ordered AP assemblies. The detailed process of AP interaction driving self-assembly was verified by morphological measurements and fluorescence spectra. The AP assemblies exhibited chirality amplification not only in the excited state but also in the ground state. In addition, the AP assemblies showed an enhanced luminescence efficiency compared with the individual chiral PAHs due to the energy-barrier effect of OFN. The present strategy based on AP interactions could be applied to boost the development of highly efficient CPL-active materials.
Collapse
Affiliation(s)
- Haowen Zhang
- College of Chemistry, Zhengzhou University, No.100 Science Avenue, Zhengzhou, 450001, P. R. China
| | - Jianlei Han
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - Xue Jin
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - Pengfei Duan
- College of Chemistry, Zhengzhou University, No.100 Science Avenue, Zhengzhou, 450001, P. R. China.,CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| |
Collapse
|
18
|
Wang Z, Li Y, Hao A, Xing P. Multi‐Modal Chiral Superstructures in Self‐Assembled Anthracene‐Terminal Amino Acids with Predictable and Adjustable Chiroptical Activities and Color Evolution. Angew Chem Int Ed Engl 2020; 60:3138-3147. [DOI: 10.1002/anie.202011907] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/27/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Zhuoer Wang
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| | - Yingzhou Li
- Shandong Provincial Key Laboratory of Molecular Engineering Qilu University of Technology (Shandong Academy of Science) Jinan 250353 P. R. China
| | - Aiyou Hao
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| |
Collapse
|
19
|
Wang Z, Li Y, Hao A, Xing P. Multi‐Modal Chiral Superstructures in Self‐Assembled Anthracene‐Terminal Amino Acids with Predictable and Adjustable Chiroptical Activities and Color Evolution. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011907] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zhuoer Wang
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| | - Yingzhou Li
- Shandong Provincial Key Laboratory of Molecular Engineering Qilu University of Technology (Shandong Academy of Science) Jinan 250353 P. R. China
| | - Aiyou Hao
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| |
Collapse
|
20
|
Fu K, Jin X, Zhou M, Ma K, Duan P, Yu ZQ. Amplifying the excited state chirality through self-assembly and subsequent enhancement via plasmonic silver nanowires. NANOSCALE 2020; 12:19760-19767. [PMID: 32966503 DOI: 10.1039/d0nr04510a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The development of circularly polarized luminescent materials with a large luminescence dissymmetry factor (glum) is continuing to be a big challenge. Here, we present a general approach for amplifying circular polarization of circularly polarized luminescence (CPL) through intergrating molecular self-assembly and surface plasmon resonance (SPR). Molecular self-assembly could amplify the CPL performance. Subsequently, the composites built of nanoassemblies and achiral silver nanowires (AgNWs) show intense CPL activity with an amplified glum value. By applying an external magnetic field, the CPL activity of the nanoassemblies/AgNWs composites has been significantly enhanced, confirming a plasmon-enhanced circular polarization. Our design strategy based on SPR-enhanced circular polarization of the chiral emissive systems suggests that combining plasmonic nanomaterials with chiral organic materials could aid in the development of novel CPL active nanomaterials.
Collapse
Affiliation(s)
- Kuo Fu
- College of Chemistry and Environmental Engineering, Low dimensional Materials, Genome Initiative Shenzhen University, 1066 Xueyuan Avenue, Nanshan, Shenzhen, 518055, P.R. China. and CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
| | - Xue Jin
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
| | - Minghao Zhou
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
| | - Kai Ma
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
| | - Pengfei Duan
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
| | - Zhen-Qiang Yu
- College of Chemistry and Environmental Engineering, Low dimensional Materials, Genome Initiative Shenzhen University, 1066 Xueyuan Avenue, Nanshan, Shenzhen, 518055, P.R. China.
| |
Collapse
|
21
|
Zhao T, Han J, Duan P, Liu M. New Perspectives to Trigger and Modulate Circularly Polarized Luminescence of Complex and Aggregated Systems: Energy Transfer, Photon Upconversion, Charge Transfer, and Organic Radical. Acc Chem Res 2020; 53:1279-1292. [PMID: 32649172 DOI: 10.1021/acs.accounts.0c00112] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chiral functional materials with circularly polarized luminescence (CPL) have risen rapidly in recent years because of their fascinating characteristics and potential applications in various research fields. CPL refers to the differential spontaneous emission of left (L)- and right (R)-handed circularly polarized light upon photon or electron excitation. Generally, an outstanding CPL-active material needs to possess a high luminescence dissymmetry factor (glum) (defined as 2(IL - IR)/(IL + IR) where I is the emission intensity), which is between -2 and +2. Although the exciting development in CPL-active materials was achieved, the modulation of CPL signs is still a challenge. For small organic systems, a relatively small glum value, one of the key parameters of CPL, limits their practical applications. Searching for efficient approaches for amplifying glum is important. Therefore, over the past decades, besides optimizing the structure of small molecules, many other strategies to obtain efficient CPL-active materials have been developed. For instance, self-assembly has been well demonstrated as an effective approach to amplify the supramolecular chirality as well as the glum values. On the other hand, chiral liquid crystals (CLCs), which are capable of selective reflection of left- and right-handed circularly polarized light, also to serve as a host matrix for endowing guest emitters with CPL activity and high glum values. However, self-assembly focuses on modulating the conformation and spatial arrangement of chiral emitters. And the CPL of a luminophore-doped CLC matrix depends on the helix pitch and band gap positions. Lately, novel photophysical approaches to modulate CPL signs have gradually emerged.In this Account, we discuss the recent progress of excited-state-regulation involved CPL-active materials. The emergence, amplification, and inversion of CPL can be adjusted through regulation of the excited state of chiral emitters. For example, Förster resonance energy transfer (FRET) can amplify the glum values of chiral energy acceptors in chiral supramolecular assemblies. By combining the concepts of photon upconversion and CPL, high-energy upconverted circularly polarized emission was achieved under excitation of low-energy light, accompanied by an amplified glum. In addition, the organic systems with unpaired electrons, i.e., charge transfer (CT) system and open-shell π-radical, show favorable CPL properties, which can be flexibly tuned with an applied magnetic field. It should be noted that these photophysical process are associated with the excited state of chiral emitters. So far, while the main focus is on the regulation of the molecular and supramolecular nanostructures, direct regulation of the excited state of the chiral system will serve as a new platform to understand and regulate the CPL activity and will be helpful to develop smart chiroptical materials.
Collapse
Affiliation(s)
- Tonghan Zhao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No.11, ZhongGuanCun BeiYiTiao, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianlei Han
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No.11, ZhongGuanCun BeiYiTiao, Beijing 100190, P.R. China
| | - Pengfei Duan
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No.11, ZhongGuanCun BeiYiTiao, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Minghua Liu
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No.11, ZhongGuanCun BeiYiTiao, Beijing 100190, P.R. China
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No.2, ZhongGuanCun BeiYiJie, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
22
|
Xu L, Wang C, Li Y, Xu X, Zhou L, Liu N, Wu Z. Crystallization‐Driven Asymmetric Helical Assembly of Conjugated Block Copolymers and the Aggregation Induced White‐light Emission and Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Lei Xu
- Department of Polymer Science and EngineeringSchool of Chemistry and Chemical EngineeringAnhui Key Laboratory of Advanced Catalytic Materials and Reaction EngineeringHefei University of Technology Hefei 230009 Anhui Province China
| | - Chao Wang
- Department of Polymer Science and EngineeringSchool of Chemistry and Chemical EngineeringAnhui Key Laboratory of Advanced Catalytic Materials and Reaction EngineeringHefei University of Technology Hefei 230009 Anhui Province China
| | - Yan‐Xiang Li
- Department of Polymer Science and EngineeringSchool of Chemistry and Chemical EngineeringAnhui Key Laboratory of Advanced Catalytic Materials and Reaction EngineeringHefei University of Technology Hefei 230009 Anhui Province China
| | - Xun‐Hui Xu
- Department of Polymer Science and EngineeringSchool of Chemistry and Chemical EngineeringAnhui Key Laboratory of Advanced Catalytic Materials and Reaction EngineeringHefei University of Technology Hefei 230009 Anhui Province China
| | - Li Zhou
- Department of Polymer Science and EngineeringSchool of Chemistry and Chemical EngineeringAnhui Key Laboratory of Advanced Catalytic Materials and Reaction EngineeringHefei University of Technology Hefei 230009 Anhui Province China
| | - Na Liu
- Department of Polymer Science and EngineeringSchool of Chemistry and Chemical EngineeringAnhui Key Laboratory of Advanced Catalytic Materials and Reaction EngineeringHefei University of Technology Hefei 230009 Anhui Province China
| | - Zong‐Quan Wu
- Department of Polymer Science and EngineeringSchool of Chemistry and Chemical EngineeringAnhui Key Laboratory of Advanced Catalytic Materials and Reaction EngineeringHefei University of Technology Hefei 230009 Anhui Province China
| |
Collapse
|
23
|
Xu L, Wang C, Li YX, Xu XH, Zhou L, Liu N, Wu ZQ. Crystallization-Driven Asymmetric Helical Assembly of Conjugated Block Copolymers and the Aggregation Induced White-light Emission and Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2020; 59:16675-16682. [PMID: 32543000 DOI: 10.1002/anie.202006561] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Indexed: 12/12/2022]
Abstract
Controlling the self-assembly morphology of π-conjugated block copolymer is of great interesting. Herein, amphiphilic poly(3-hexylthiophene)-block-poly(phenyl isocyanide)s (P3HT-b-PPI) copolymers composed of π-conjugated P3HT and optically active helical PPI segments were readily prepared. Taking advantage of the crystallizable nature of P3HT and the chirality of the helical PPI segment, crystallization-driven asymmetric self-assembly (CDASA) of the block copolymers lead to the formation of single-handed helical nanofibers with controlled length, narrow dispersity, and well-defined helicity. During the self-assembly process, the chirality of helical PPI was transferred to the supramolecular assemblies, giving the helical assemblies large optical activity. The single-handed helical assemblies of the block copolymers exhibited interesting white-light emission and circularly polarized luminescence (CPL). The handedness and dissymmetric factor of the induced CPL can be finely tuned through the variation on the helicity and length of the helical nanofibers.
Collapse
Affiliation(s)
- Lei Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, 230009, Anhui Province, China
| | - Chao Wang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, 230009, Anhui Province, China
| | - Yan-Xiang Li
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, 230009, Anhui Province, China
| | - Xun-Hui Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, 230009, Anhui Province, China
| | - Li Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, 230009, Anhui Province, China
| | - Na Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, 230009, Anhui Province, China
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, 230009, Anhui Province, China
| |
Collapse
|
24
|
Wang Z, Zhang H, Hao A, Zhao Y, Xing P. Modular Molecular Self-Assembly for Diversified Chiroptical Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002036. [PMID: 32578382 DOI: 10.1002/smll.202002036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/14/2020] [Indexed: 06/11/2023]
Abstract
Bottom-up multicomponent molecular self-assembly is an efficient approach to fabricate and manipulate chiral nanostructures and their chiroptical activities such as the Cotton effect and circular polarized luminescence (CPL). However, the integrated coassembly suffers from spontaneous and inherent systematic pathway complexity with low yield and poor fidelity. Consequently, a rational design of chiral self-assembled systems with more than two components remains a significant challenge. Herein, a modularized, ternary molecular self-assembly strategy that generates chiroptically active materials at diverse hierarchical levels is reported. N-terminated aromatic amino acids appended with binding sites for charge transfer and multiple hydrogen bonds undergo the evolution of supramolecular chirality with unique handedness and luminescent color, generating abundant CPL emission with high luminescence dissymmetry factor values in precisely controlled modalities. Ternary coassembly facilitates high-water-content hydrogel formation constituted by super-helical nanostructures, demonstrating a helix to toroid topological transition. This discovery would shed light on developing complicated multicomponent systems in mimicking biological coassembly events.
Collapse
Affiliation(s)
- Zhuoer Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Heng Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Aiyou Hao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
25
|
Sun CL, Li J, Song QW, Ma Y, Zhang ZQ, De JB, Liao Q, Fu H, Yao J, Zhang HL. Lasing from an Organic Micro-Helix. Angew Chem Int Ed Engl 2020; 59:11080-11086. [PMID: 32219946 DOI: 10.1002/anie.202002797] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Indexed: 11/10/2022]
Abstract
Organic solid-state semiconductor lasers are attracting ever-increasing interest for their potential application in future photonic circuits. Despite the great progress made in recent years, an organic laser from 3D chiral structures has not been achieved. Now, the first example of an organic nano-laser from the micro-helix structure of an achiral molecule is presented. Highly regular micro-helixes with left/right-handed helicity from a distyrylbenzene derivative (HM-DSB) were fabricated and characterized under microscope spectrometers. These chiral micro-helixes exhibit unique photonic properties, including helicity-dependent circularly polarized luminescence (CPL), periodic optical waveguiding, and length-dependent amplified spontaneous emission (ASE) behavior. The successful observation of laser behavior from the organic micro-helix extends our understanding to morphology chirality of organic photonic materials and provides a new design strategy towards chiral photonic circuits.
Collapse
Affiliation(s)
- Chun-Lin Sun
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jun Li
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Qi-Wei Song
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yu Ma
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Ze-Qi Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jian-Bo De
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| | - Qing Liao
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| | - Hongbing Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China.,Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, and Collaborative, Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Jiannian Yao
- Beijing National Laboratory for Molecules Science (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, and Collaborative, Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China.,Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, and Collaborative, Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| |
Collapse
|
26
|
Sun C, Li J, Song Q, Ma Y, Zhang Z, De J, Liao Q, Fu H, Yao J, Zhang H. Lasing from an Organic Micro‐Helix. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Chun‐Lin Sun
- State Key Laboratory of Applied Organic Chemistry (SKLAOC)Key Laboratory of Special Function Materials and Structure Design (MOE)College of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000 P. R. China
| | - Jun Li
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary ConditionsSchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical University Xi'an 710072 P. R. China
| | - Qi‐Wei Song
- State Key Laboratory of Applied Organic Chemistry (SKLAOC)Key Laboratory of Special Function Materials and Structure Design (MOE)College of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000 P. R. China
| | - Yu Ma
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary ConditionsSchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical University Xi'an 710072 P. R. China
| | - Ze‐Qi Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC)Key Laboratory of Special Function Materials and Structure Design (MOE)College of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000 P. R. China
| | - Jian‐Bo De
- Beijing Key Laboratory for Optical Materials and Photonic DevicesDepartment of ChemistryCapital Normal University Beijing 100048 P. R. China
| | - Qing Liao
- Beijing Key Laboratory for Optical Materials and Photonic DevicesDepartment of ChemistryCapital Normal University Beijing 100048 P. R. China
| | - Hongbing Fu
- Beijing Key Laboratory for Optical Materials and Photonic DevicesDepartment of ChemistryCapital Normal University Beijing 100048 P. R. China
- Tianjin Key Laboratory of Molecular Optoelectronic SciencesDepartment of ChemistryTianjin University, and CollaborativeInnovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 P. R. China
| | - Jiannian Yao
- Beijing National Laboratory for Molecules Science (BNLMS)State Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesKey Laboratory of PhotochemistryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- Tianjin Key Laboratory of Molecular Optoelectronic SciencesDepartment of ChemistryTianjin University, and CollaborativeInnovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 P. R. China
| | - Hao‐Li Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC)Key Laboratory of Special Function Materials and Structure Design (MOE)College of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000 P. R. China
- Tianjin Key Laboratory of Molecular Optoelectronic SciencesDepartment of ChemistryTianjin University, and CollaborativeInnovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 P. R. China
| |
Collapse
|
27
|
Wu J, Zheng G, Liu X, Qiu J. Near-infrared laser driven white light continuum generation: materials, photophysical behaviours and applications. Chem Soc Rev 2020; 49:3461-3483. [PMID: 32338256 DOI: 10.1039/c9cs00646j] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The pursuit of efficient light sources has stimulated continued effort in the search of materials and methods for generating white light emission. In addition to the white light produced by light-emitting diodes (LEDs) and fluorescent lamps that involves spectral conversion of high energy to low energy emission, recent studies showed that it was also possible to produce white visible light by irradiating different active materials with near-infrared (NIR) constant-wave (CW) lasers. In this review, we begin by introducing and categorizing different materials that exhibit NIR laser driven white light emission, including normal inorganic phosphors, organometallic compounds, graphene, etc. We then discuss the photophysical behavior of this process in terms of optical spectra, temperature evolution and photoelectric response. Different mechanisms of while light generation are analyzed afterwards, and the possibility of a more general physical picture of this process is discussed. This review is concluded with a summary of the current understanding and discussion on potential applications and future perspectives.
Collapse
Affiliation(s)
- Jianhong Wu
- State Key Lab of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | | | | | | |
Collapse
|
28
|
Yang J, Li K, Wang J, Sun S, Chi W, Wang C, Chang X, Zou C, To W, Li M, Liu X, Lu W, Zhang H, Che C, Chen Y. Controlling Metallophilic Interactions in Chiral Gold(I) Double Salts towards Excitation Wavelength‐Tunable Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000792] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jian‐Gong Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Kai Li
- Shenzhen Key Laboratory of Polymer Science and TechnologyCollege of Materials Science and EngineeringShenzhen University Shenzhen 518055 P. R. China
| | - Jian Wang
- Institute of Theoretical ChemistryCollege of ChemistryJilin University Changchun 130023 P. R. China
| | - Shanshan Sun
- Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong ProvinceDepartment of ChemistryShantou University Shantou 515031 P. R. China
| | - Weijie Chi
- Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Chao Wang
- Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Xiaoyong Chang
- Department of ChemistrySouthern University of Science and Technology Shenzhen 518055 P. R. China
| | - Chao Zou
- Department of ChemistrySouthern University of Science and Technology Shenzhen 518055 P. R. China
| | - Wai‐Pong To
- State Key Laboratory of Synthetic Chemistry & Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Ming‐De Li
- Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong ProvinceDepartment of ChemistryShantou University Shantou 515031 P. R. China
| | - Xiaogang Liu
- Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Wei Lu
- Department of ChemistrySouthern University of Science and Technology Shenzhen 518055 P. R. China
| | - Hong‐Xing Zhang
- Institute of Theoretical ChemistryCollege of ChemistryJilin University Changchun 130023 P. R. China
| | - Chi‐Ming Che
- State Key Laboratory of Synthetic Chemistry & Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Yong Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
29
|
Yang J, Li K, Wang J, Sun S, Chi W, Wang C, Chang X, Zou C, To W, Li M, Liu X, Lu W, Zhang H, Che C, Chen Y. Controlling Metallophilic Interactions in Chiral Gold(I) Double Salts towards Excitation Wavelength‐Tunable Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2020; 59:6915-6922. [DOI: 10.1002/anie.202000792] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Jian‐Gong Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Kai Li
- Shenzhen Key Laboratory of Polymer Science and TechnologyCollege of Materials Science and EngineeringShenzhen University Shenzhen 518055 P. R. China
| | - Jian Wang
- Institute of Theoretical ChemistryCollege of ChemistryJilin University Changchun 130023 P. R. China
| | - Shanshan Sun
- Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong ProvinceDepartment of ChemistryShantou University Shantou 515031 P. R. China
| | - Weijie Chi
- Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Chao Wang
- Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Xiaoyong Chang
- Department of ChemistrySouthern University of Science and Technology Shenzhen 518055 P. R. China
| | - Chao Zou
- Department of ChemistrySouthern University of Science and Technology Shenzhen 518055 P. R. China
| | - Wai‐Pong To
- State Key Laboratory of Synthetic Chemistry & Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Ming‐De Li
- Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong ProvinceDepartment of ChemistryShantou University Shantou 515031 P. R. China
| | - Xiaogang Liu
- Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Wei Lu
- Department of ChemistrySouthern University of Science and Technology Shenzhen 518055 P. R. China
| | - Hong‐Xing Zhang
- Institute of Theoretical ChemistryCollege of ChemistryJilin University Changchun 130023 P. R. China
| | - Chi‐Ming Che
- State Key Laboratory of Synthetic Chemistry & Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Yong Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
30
|
Lee S, Kim KY, Jung SH, Lee JH, Yamada M, Sethy R, Kawai T, Jung JH. Finely Controlled Circularly Polarized Luminescence of a Mechano‐Responsive Supramolecular Polymer. Angew Chem Int Ed Engl 2019; 58:18878-18882. [DOI: 10.1002/anie.201911380] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Seonae Lee
- Department of Chemistry and Research Institute of Natural SciencesGyeongsang National University Jinju 52828 Republic of Korea
| | - Ka Young Kim
- Department of Chemistry and Research Institute of Natural SciencesGyeongsang National University Jinju 52828 Republic of Korea
| | - Sung Ho Jung
- Department of Liberal ArtsGyeongnam National University of Science and Technology(GNTECH) Jinju Republic of Korea
| | - Ji Ha Lee
- Department of Chemistry and BiochemistryUniversity of Kitakyushu Hibikino Kitakyushu 808-0135 Japan
| | - Mihoko Yamada
- Division of Materials ScienceNara Institute of Science and Technology, NAIST 8916-5 Takayama Ikoma Nara 630-0192 Japan
| | - Ramarani Sethy
- Division of Materials ScienceNara Institute of Science and Technology, NAIST 8916-5 Takayama Ikoma Nara 630-0192 Japan
| | - Tsuyoshi Kawai
- Division of Materials ScienceNara Institute of Science and Technology, NAIST 8916-5 Takayama Ikoma Nara 630-0192 Japan
| | - Jong Hwa Jung
- Department of Chemistry and Research Institute of Natural SciencesGyeongsang National University Jinju 52828 Republic of Korea
| |
Collapse
|
31
|
Lee S, Kim KY, Jung SH, Lee JH, Yamada M, Sethy R, Kawai T, Jung JH. Finely Controlled Circularly Polarized Luminescence of a Mechano‐Responsive Supramolecular Polymer. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911380] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Seonae Lee
- Department of Chemistry and Research Institute of Natural SciencesGyeongsang National University Jinju 52828 Republic of Korea
| | - Ka Young Kim
- Department of Chemistry and Research Institute of Natural SciencesGyeongsang National University Jinju 52828 Republic of Korea
| | - Sung Ho Jung
- Department of Liberal ArtsGyeongnam National University of Science and Technology(GNTECH) Jinju Republic of Korea
| | - Ji Ha Lee
- Department of Chemistry and BiochemistryUniversity of Kitakyushu Hibikino Kitakyushu 808-0135 Japan
| | - Mihoko Yamada
- Division of Materials ScienceNara Institute of Science and Technology, NAIST 8916-5 Takayama Ikoma Nara 630-0192 Japan
| | - Ramarani Sethy
- Division of Materials ScienceNara Institute of Science and Technology, NAIST 8916-5 Takayama Ikoma Nara 630-0192 Japan
| | - Tsuyoshi Kawai
- Division of Materials ScienceNara Institute of Science and Technology, NAIST 8916-5 Takayama Ikoma Nara 630-0192 Japan
| | - Jong Hwa Jung
- Department of Chemistry and Research Institute of Natural SciencesGyeongsang National University Jinju 52828 Republic of Korea
| |
Collapse
|
32
|
Wang Y, Jiang Y, Zhu X, Liu M. Significantly Boosted and Inversed Circularly Polarized Luminescence from Photogenerated Radical Anions in Dipeptide Naphthalenediimide Assemblies. J Phys Chem Lett 2019; 10:5861-5867. [PMID: 31464127 DOI: 10.1021/acs.jpclett.9b02269] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Circularly polarized luminescence (CPL) reflects the excited-state properties of the chiral system. However, compared to the singlet and triplet excited states, there are still many unknowns about CPL from the double excited state. Here, using the self-assembly strategy of a dipeptide substituted naphthalenediimide (NDI-GE) and the photogenerated radical anions, we have explored the ground-state (CD) and excited-state (CPL) chiral characteristics of neutral NDI and NDI•- radical anion assemblies. The neutral gelator assemblies showed CPL with the dissymmetry factor glum on the order of 10-3; the radical anion exhibited an inversed CPL signal with a significantly enhanced glum of 10-1. Time-dependent density functional theory calculation revealed that upon formation of the radical anions, the direction of the dipole moment changed, thus leading to the inversion of CD and CPL. The present work reveals a new platform for developing CPL materials based on the doublet excited state.
Collapse
Affiliation(s)
- Yuan Wang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P.R. China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yuqian Jiang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , P.R. China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P.R. China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P.R. China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
33
|
Kumar R, Aggarwal H, Bhowal R, Chopra D, Srivastava A. An Electron‐Rich Helical Host for the Exclusive Removal of a Planar Electron‐Deficient Organic Compound. Chemistry 2019; 25:10756-10762. [DOI: 10.1002/chem.201902418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/04/2019] [Indexed: 01/23/2023]
Affiliation(s)
- Rajesh Kumar
- Department of ChemistryIndian Institute of Science Education and Research Bhopal, Madhya Pradesh 462066 India
| | - Himanshu Aggarwal
- Department of ChemistryIndian Institute of Science Education and Research Bhopal, Madhya Pradesh 462066 India
| | - Rohit Bhowal
- Department of ChemistryIndian Institute of Science Education and Research Bhopal, Madhya Pradesh 462066 India
| | - Deepak Chopra
- Department of ChemistryIndian Institute of Science Education and Research Bhopal, Madhya Pradesh 462066 India
| | - Aasheesh Srivastava
- Department of ChemistryIndian Institute of Science Education and Research Bhopal, Madhya Pradesh 462066 India
| |
Collapse
|