1
|
Xie FF, Chen ZC, Zhang M, Xie XM, Chen LF, Tian HR, Deng SL, Xie SY, Zheng LS. Capturing nonclassical C 70 with double heptagons in low-pressure combustion. Chem Commun (Camb) 2022; 58:9814-9817. [PMID: 35975480 DOI: 10.1039/d2cc03707f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A double-heptagon-containing C70H6 (dihept-C70H6) was isolated and unambiguously characterized in the soot of low-pressure combustion, which shares the identical heptagonal cage as dihept-C70Cl6 previously identified in the products of carbon arc, and thus represents the first nonclassical fullerene isolable in both carbon arc and combustion.
Collapse
Affiliation(s)
- Fang-Fang Xie
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Zuo-Chang Chen
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Min Zhang
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xiao-Ming Xie
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Ling-Fang Chen
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Han-Rui Tian
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Shun-Liu Deng
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Su-Yuan Xie
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Lan-Sun Zheng
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
2
|
Qiu ZL, Chen XW, Huang YD, Wei RJ, Chu KS, Zhao XJ, Tan YZ. Nanographene with Multiple Embedded Heptagons: Cascade Radical Photocyclization. Angew Chem Int Ed Engl 2022; 61:e202116955. [PMID: 35191583 DOI: 10.1002/anie.202116955] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Indexed: 12/27/2022]
Abstract
Although heptagons are widely found in graphenic materials, the precise synthesis of nanocarbons containing heptagons remains a challenge, especially for the nanocarbons containing multiple-heptagons. Herein, we show that photo-induced radical cyclization (PIRC) can be used to synthesize multi-heptagon-embedded nanocarbons. Notably, a nanographene containing six heptagons (1) was obtained via a six-fold cascade PIRC reaction. The structure of 1 was clearly validated and showed a Monkey-saddle-shaped conformation. Experimental bond analysis and theoretical calculations indicated that the heptagons in 1 were non-aromatic, whereas the peripheral rings were highly aromatic. Compared to planar nanographene with the same number of π electrons, 1 had a similar optical gap due to a compromise between the decreased conjugation in the wrapped structure and enhanced electronic delocalization at the rim. Electrochemical studies showed that 1 had low-lying oxidation potentials, which was attributed to the nitrogen-doping.
Collapse
Affiliation(s)
- Zhen-Lin Qiu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry, Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xuan-Wen Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry, Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yu-Dong Huang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry, Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Rong-Jing Wei
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry, Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ke-Shan Chu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry, Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xin-Jing Zhao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry, Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yuan-Zhi Tan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry, Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
3
|
Qiu Z, Chen X, Huang Y, Wei R, Chu K, Zhao X, Tan Y. Nanographene with Multiple Embedded Heptagons: Cascade Radical Photocyclization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhen‐Lin Qiu
- State Key Laboratory for Physical Chemistry of Solid Surfaces Department of Chemistry College of Chemistry Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xuan‐Wen Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces Department of Chemistry College of Chemistry Chemical Engineering Xiamen University Xiamen 361005 China
| | - Yu‐Dong Huang
- State Key Laboratory for Physical Chemistry of Solid Surfaces Department of Chemistry College of Chemistry Chemical Engineering Xiamen University Xiamen 361005 China
| | - Rong‐Jing Wei
- State Key Laboratory for Physical Chemistry of Solid Surfaces Department of Chemistry College of Chemistry Chemical Engineering Xiamen University Xiamen 361005 China
| | - Ke‐Shan Chu
- State Key Laboratory for Physical Chemistry of Solid Surfaces Department of Chemistry College of Chemistry Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xin‐Jing Zhao
- State Key Laboratory for Physical Chemistry of Solid Surfaces Department of Chemistry College of Chemistry Chemical Engineering Xiamen University Xiamen 361005 China
| | - Yuan‐Zhi Tan
- State Key Laboratory for Physical Chemistry of Solid Surfaces Department of Chemistry College of Chemistry Chemical Engineering Xiamen University Xiamen 361005 China
| |
Collapse
|