1
|
Sušanj R, Nemec V, Bedeković N, Cinčić D. Halogen Bond Motifs in Cocrystals of N, N, O and N, O, O Acceptors Derived from Diketones and Containing a Morpholine or Piperazine Moiety. CRYSTAL GROWTH & DESIGN 2022; 22:5135-5142. [PMID: 36097548 PMCID: PMC9461725 DOI: 10.1021/acs.cgd.2c00665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/26/2022] [Indexed: 06/15/2023]
Abstract
In this study, we investigate the halogen bond acceptor potential of oxygen and nitrogen atoms of morpholine and piperazine fragments when they are peripherally located on N,O,O or N,N,O acceptor molecules. We synthesized four acceptor molecules derived from either acetylacetone or benzoylacetone and cocrystallized them with 1,4-diiodotetrafluorobenzene and 1,3,5-triiodotrifluorobenzene. This resulted in eight cocrystals featuring different topicities and geometric dispositions of donor atoms. In all cocrystals, halogen bonds are formed with either the morpholinyl oxygen atom or the terminal piperazine nitrogen atom. The I···Omorpholine halogen bonds feature lower relative shortening values than I···Nterminal, I···Ocarbonyl, and I···Nproximal halogen bonds. The N and O halogen bond acceptor sites were evaluated through calculations of molecular electrostatic potential values.
Collapse
|
2
|
Zhang J, Yang WL, Zheng H, Wang Y, Deng WP. Regio- and Enantioselective γ-Allylic Alkylation of In Situ-Generated Free Dienolates via Scandium/Iridium Dual Catalysis. Angew Chem Int Ed Engl 2022; 61:e202117079. [PMID: 35212099 DOI: 10.1002/anie.202117079] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Indexed: 12/28/2022]
Abstract
An unprecedented asymmetric γ-allylic alkylation of free dienolates via Sc/Ir dual catalysis is reported, which affords a range of synthetically versatile γ-allylic crotonaldehydes in high efficiency with excellent chemo-, regio-, and enantioselectivities. The dienolates bearing no essential auxiliary groups were generated in situ by scandium triflate-mediated Meinwald rearrangement of vinyloxiranes atom-economically. With the assistance of computational density functional theory calculations, a Sc/Ir bimetallic catalytic cycle was proposed to illustrate the reaction mechanism.
Collapse
Affiliation(s)
- Jian Zhang
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Wu-Lin Yang
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Hanliang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Yi Wang
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Wei-Ping Deng
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China.,Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, 321004, P. R. China
| |
Collapse
|
3
|
Chakrabarty A, Mukherjee S. Iridium-Catalyzed Enantioselective and Chemodivergent Allenylic Alkylation of Vinyl Azides for the Synthesis of α-Allenylic Amides and Ketones. Angew Chem Int Ed Engl 2022; 61:e202115821. [PMID: 35044711 DOI: 10.1002/anie.202115821] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Indexed: 01/14/2023]
Abstract
The first enantioselective synthesis of α-allenylic amides and ketones through allenylic alkylation of vinyl azides is reported. In these chemodivergent reactions, cooperatively catalyzed by a IrI /(phosphoramidite,olefin) complex and Sc(OTf)3 , vinyl azides act as the surrogate for both amide enolates and ketone enolates. The desiccant (molecular sieves) plays a crucial role in controlling the chemodivergency of this enantioconvergent and regioselective reaction: Under otherwise identical reaction conditions, the presence of the desiccant led to α-allenylic amides, while its absence resulted in α-allenylic ketones. Utilizing racemic allenylic alcohols as the alkylating agent, the overall process represents a dynamic kinetic asymmetric transformation (DyKAT), where both the products are formed with the same absolute configuration. To the best of our knowledge, this is the first example of the use of vinyl azide as the ketone enolate surrogate in an enantioselective transformation.
Collapse
Affiliation(s)
- Aditya Chakrabarty
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Santanu Mukherjee
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| |
Collapse
|
4
|
Zhang J, Yang WL, Zheng H, Wang Y, Deng WP. Regio‐ and Enantioselective γ‐Allylic Alkylation of In‐Situ‐Generated Free Dienolates via Scandium/Iridium Dual Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jian Zhang
- East China University of Science and Technology School of Pharmacy Meilong Road 130 200237 Shanghai CHINA
| | - Wu-Lin Yang
- East China University of Science and Technology School of Pharmacy Meilong Road 130 200237 Shanghai CHINA
| | - Hanliang Zheng
- Zhejiang Normal University Department of Chemistry CHINA
| | - Yi Wang
- East China University of Science and Technology School of Pharmacy Meilong Road 130 200237 Shanghai CHINA
| | - Wei-Ping Deng
- East China University of Science and Technology School of Pharmacy 130 Meilong Road 200237 Shanghai CHINA
| |
Collapse
|
5
|
Chakrabarty A, Mukherjee S. Iridium‐Catalyzed Enantioselective and Chemodivergent Allenylic Alkylation of Vinyl Azides for the Synthesis of α‐Allenylic Amides and Ketones**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Aditya Chakrabarty
- Department of Organic Chemistry Indian Institute of Science Bangalore 560 012 India
| | - Santanu Mukherjee
- Department of Organic Chemistry Indian Institute of Science Bangalore 560 012 India
| |
Collapse
|
6
|
Glatz F, Petrone DA, Carreira EM. Ir-Catalyzed Enantioconvergent Synthesis of Diversely Protected Allenylic Amines Employing Ammonia Surrogates. Angew Chem Int Ed Engl 2020; 59:16404-16408. [PMID: 32558158 DOI: 10.1002/anie.202005599] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Indexed: 01/14/2023]
Abstract
The first iridium catalyzed, enantioconvergent amination of allenylic carbonates is reported. This process utilizes various commercially available carbamates and sulfonamides to generate allenylic amines including commonly employed protected groups (Boc, Fmoc, Cbz, Ts, Ns) in 62-82 % yield and 87-98 % ee. The products generated through this scalable procedure serve as effective linchpins for the rapid, enantiospecific synthesis of a wide range of complex structures.
Collapse
Affiliation(s)
- Fabian Glatz
- Laboratorium für Organische Chemie, HCI H335, Eidgenössiche Technische Hochschule Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - David A Petrone
- Laboratorium für Organische Chemie, HCI H335, Eidgenössiche Technische Hochschule Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Erick M Carreira
- Laboratorium für Organische Chemie, HCI H335, Eidgenössiche Technische Hochschule Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| |
Collapse
|
7
|
Glatz F, Petrone DA, Carreira EM. Ir‐Catalyzed Enantioconvergent Synthesis of Diversely Protected Allenylic Amines Employing Ammonia Surrogates. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fabian Glatz
- Laboratorium für Organische Chemie, HCI H335Eidgenössiche Technische Hochschule Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - David A. Petrone
- Laboratorium für Organische Chemie, HCI H335Eidgenössiche Technische Hochschule Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Erick M. Carreira
- Laboratorium für Organische Chemie, HCI H335Eidgenössiche Technische Hochschule Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| |
Collapse
|
8
|
Han M, Yang M, Wu R, Li Y, Jia T, Gao Y, Ni HL, Hu P, Wang BQ, Cao P. Highly Enantioselective Iridium-Catalyzed Coupling Reaction of Vinyl Azides and Racemic Allylic Carbonates. J Am Chem Soc 2020; 142:13398-13405. [DOI: 10.1021/jacs.0c01766] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Min Han
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Min Yang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Rui Wu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Yang Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Tao Jia
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Yuanji Gao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Hai-Liang Ni
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Ping Hu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Bi-Qin Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Peng Cao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| |
Collapse
|