1
|
Gaikwad PA, Samadder P, Som S, Chopra D, Neelakandan PP, Srivastava A. Luminescent hexagonal microtubes prepared through water-induced self-assembly of a polymorphic organoboron compound: formation mechanism and waveguide behaviour. NANOSCALE 2023; 15:14380-14387. [PMID: 37609773 DOI: 10.1039/d3nr02903d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Tetra-coordinated organoboron (TCOB) compounds are promising candidates for developing high-performance optical devices due to their excellent optoelectronic performance. Fabricating TCOB-based nanomaterials of controlled and defined morphology through rapid and easy-to-execute protocols can significantly accelerate their practical utility in the aforesaid applications. Herein, we report water-induced self-assembly (WISA) to convert a polymorphic TCOB complex (HNBI-B, derived from a 2-(2'-hydroxy-naphthyl)-benzimidazole precursor) into two unique nanomorphologies viz. nanodiscoids (NDs) and fluorescent microtubes with hexagonal cross-sections (HMTs). Detailed electron microscopic investigations revealed that oriented assembly and fusion of the initially formed NDs yield the blue emissive HMTs (SSQY = 26.7%) that exhibited highly promising photophysical behaviour. For example, the HMTs outperformed all the crystal polymorphs of HNBI-B obtained from CHCl3, EtOAc and MeOH in emissivity and also exhibited superior waveguide behaviour, with a much lower optical loss coefficient α' = 1.692 dB mm-1 compared to the rod-shaped microcrystals of HNBI-B obtained from MeOH (α' = 1.853 dB mm-1). Thus, this work reports rapid access to high performance optical nanomaterials through WISA, opening new avenues for creating useful nanomaterial morphologies with superior optical performance.
Collapse
Affiliation(s)
- Pradip A Gaikwad
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India.
| | - Prodipta Samadder
- Institute of Nano Science and Technology, Sector - 81, Mohali 140306, Punjab, India.
| | - Shubham Som
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India.
| | - Deepak Chopra
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India.
| | - Prakash P Neelakandan
- Institute of Nano Science and Technology, Sector - 81, Mohali 140306, Punjab, India.
| | - Aasheesh Srivastava
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India.
| |
Collapse
|
2
|
Hayakawa M, Kameda M, Kawasumi R, Nakatsuka S, Yasuda N, Hatakeyama T. Spiroborate-Based Host Materials with High Triplet Energies and Ambipolar Charge-Transport Properties. Angew Chem Int Ed Engl 2023; 62:e202217512. [PMID: 36718823 DOI: 10.1002/anie.202217512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/29/2022] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Organic light-emitting diodes (OLEDs) receive considerable attention because of their commercial use in flat panel displays. Herein, highly efficient spiroborate-based host materials are reported for use in blue OLEDs. Our designed spiroborates (SBOX) were simple to synthesize and exhibited high triplet excitation energies, narrow S-T gaps, and balanced charge carrier mobilities. A blue OLED containing one of the designed spiroborates, SBON, as a host exhibited a high external quantum efficiency (27.6 %) and low turn-on voltage (3.7 V) compared to those observed using 3,3'-di(9H-carbazol-9-yl)-1,1'-biphenyl (17.6 % and 4.5 V, respectively), indicating their potential as host materials in OLEDs.
Collapse
Affiliation(s)
- Masahiro Hayakawa
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Mayu Kameda
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Ryosuke Kawasumi
- SK JNC Japan Co., Ltd., 5-1 Goi Kaigan, Ichihara, Chiba, 290-8551, Japan
| | - Soichiro Nakatsuka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.,Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Nobuhiro Yasuda
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Takuji Hatakeyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.,Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, Japan
| |
Collapse
|
3
|
Wang X, Sun Y, Wang G, Li J, Li X, Zhang K. TADF-Type Organic Afterglow. Angew Chem Int Ed Engl 2021; 60:17138-17147. [PMID: 34060200 DOI: 10.1002/anie.202105628] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/29/2021] [Indexed: 11/05/2022]
Abstract
We report a highly efficient dopant-matrix afterglow system enabled by TADF mechanism to realize afterglow quantum yields of 60-70 %, which features a moderate rate constant for reverse intersystem crossing (kRISC ) to simultaneously improve afterglow quantum yields and maintain afterglow emission lifetime. Difluoroboron β-diketonate (BF2 bdk) compounds are designed with multiple electron-donating groups to possess moderate kRISC values and are selected as luminescent dopants. The matrices with carbonyl functional groups such as phenyl benzoate (PhB) have been found to interact with and perturb BF2 bdk excited states by dipole-dipole interactions and thus enhance the intersystem crossing of BF2 bdk excited states. Through dopant-matrix collaboration, the efficient TADF-type afterglow materials have been achieved to exhibit excellent processability into desired shapes and large-area films by melt casting, as well as aqueous afterglow dispersions for potential bioimaging applications.
Collapse
Affiliation(s)
- Xuepu Wang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Yan Sun
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Guangming Wang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Jiuyang Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Xun Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Kaka Zhang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| |
Collapse
|
4
|
|
5
|
Li TY, Shlian DG, Djurovich PI, Thompson ME. A Luminescent Two-Coordinate Au I Bimetallic Complex with a Tandem-Carbene Structure: A Molecular Design for the Enhancement of TADF Radiative Decay Rate. Chemistry 2021; 27:6191-6197. [PMID: 33561304 DOI: 10.1002/chem.202100512] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Indexed: 12/15/2022]
Abstract
A luminescent bimetallic AuI complex comprised of N-heterocyclic carbene (NHC) and carbazole (Cz) ligands, that is, (NHC')Au(NHC)AuCz has been synthesized and studied. Both carbene ligands in the bimetallic complex act as electron acceptors in tandem to increase the energy separation between the ground and excited state, which is higher than those found in either monometallic analogue, (NHC)AuCz and (NHC')AuCz. A coplanar geometry designed into the tandem complex ensures sufficient electronic coupling between the π-orbitals of the ligands to impart a strong oscillator strength to the singlet intra-ligand charge-transfer (1 ICT) transition. Theoretical modelling indicates that the emissive ICT excited state involves both NHC ligands. The tandem complex gives blue luminescence (λmax =480 nm) with a high photoluminescent quantum yield (ΦPL =0.80) with a short decay lifetime (τ=0.52 μs). Temperature-dependent photophysical studies indicate that emission is via thermally assisted delayed fluorescence (TADF) and give a small singlet-triplet energy difference (ΔEST =50 meV, 400 cm-1 ) consistent with the short TADF lifetime.
Collapse
Affiliation(s)
- Tian-Yi Li
- Department of Chemistry, University of Southern California, Los Angeles, California, 90089, USA
| | - Daniel G Shlian
- Department of Chemistry, Columbia University, New York, 10027, USA
| | - Peter I Djurovich
- Department of Chemistry, University of Southern California, Los Angeles, California, 90089, USA
| | - Mark E Thompson
- Department of Chemistry, University of Southern California, Los Angeles, California, 90089, USA
| |
Collapse
|
6
|
Min Y, Dou C, Tian H, Liu J, Wang L. Isomers of B←N‐Fused Dibenzo‐azaacenes: How B←N Affects Opto‐electronic Properties and Device Behaviors? Chemistry 2021; 27:4364-4372. [DOI: 10.1002/chem.202004615] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/20/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Yang Min
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Science 5625 Renmin Rd. Changchun 130022 China
- University of Chinese Academy of Science 19(A) Yuquan Road Beijing 100049 China
| | - Chuandong Dou
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Science 5625 Renmin Rd. Changchun 130022 China
| | - Hongkun Tian
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Science 5625 Renmin Rd. Changchun 130022 China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Science 5625 Renmin Rd. Changchun 130022 China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Science 5625 Renmin Rd. Changchun 130022 China
| |
Collapse
|
7
|
Li Q, Hu J, Lv J, Wang X, Shao S, Wang L, Jing X, Wang F. Through‐Space Charge‐Transfer Polynorbornenes with Fixed and Controllable Spatial Alignment of Donor and Acceptor for High‐Efficiency Blue Thermally Activated Delayed Fluorescence. Angew Chem Int Ed Engl 2020; 59:20174-20182. [DOI: 10.1002/anie.202008912] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Qiang Li
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jun Hu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jianhong Lv
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Xingdong Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Shiyang Shao
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Fosong Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| |
Collapse
|
8
|
Li Q, Hu J, Lv J, Wang X, Shao S, Wang L, Jing X, Wang F. Through‐Space Charge‐Transfer Polynorbornenes with Fixed and Controllable Spatial Alignment of Donor and Acceptor for High‐Efficiency Blue Thermally Activated Delayed Fluorescence. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008912] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Qiang Li
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jun Hu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jianhong Lv
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Xingdong Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Shiyang Shao
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Fosong Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| |
Collapse
|
9
|
Wang J, Fang Y, Li C, Niu L, Fang W, Cui G, Yang Q. Time‐Dependent Afterglow Color in a Single‐Component Organic Molecular Crystal. Angew Chem Int Ed Engl 2020; 59:10032-10036. [DOI: 10.1002/anie.202001141] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Jian‐Xin Wang
- Institution Key Laboratory of RadiopharmaceuticalsCollege of ChemistryBeijing Normal University Beijing 100875 P. R. China
| | - Ye‐Guang Fang
- Key Laboratory of Theoretical and Computational PhotochemistryMinistry of EducationCollege of ChemistryBeijing Normal University Beijing 100875 P. R. China
| | - Chun‐Xiang Li
- Key Laboratory of Theoretical and Computational PhotochemistryMinistry of EducationCollege of ChemistryBeijing Normal University Beijing 100875 P. R. China
| | - Li‐Ya Niu
- Institution Key Laboratory of RadiopharmaceuticalsCollege of ChemistryBeijing Normal University Beijing 100875 P. R. China
| | - Wei‐Hai Fang
- Key Laboratory of Theoretical and Computational PhotochemistryMinistry of EducationCollege of ChemistryBeijing Normal University Beijing 100875 P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational PhotochemistryMinistry of EducationCollege of ChemistryBeijing Normal University Beijing 100875 P. R. China
| | - Qing‐Zheng Yang
- Institution Key Laboratory of RadiopharmaceuticalsCollege of ChemistryBeijing Normal University Beijing 100875 P. R. China
| |
Collapse
|
10
|
Wang J, Fang Y, Li C, Niu L, Fang W, Cui G, Yang Q. Time‐Dependent Afterglow Color in a Single‐Component Organic Molecular Crystal. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001141] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jian‐Xin Wang
- Institution Key Laboratory of RadiopharmaceuticalsCollege of ChemistryBeijing Normal University Beijing 100875 P. R. China
| | - Ye‐Guang Fang
- Key Laboratory of Theoretical and Computational PhotochemistryMinistry of EducationCollege of ChemistryBeijing Normal University Beijing 100875 P. R. China
| | - Chun‐Xiang Li
- Key Laboratory of Theoretical and Computational PhotochemistryMinistry of EducationCollege of ChemistryBeijing Normal University Beijing 100875 P. R. China
| | - Li‐Ya Niu
- Institution Key Laboratory of RadiopharmaceuticalsCollege of ChemistryBeijing Normal University Beijing 100875 P. R. China
| | - Wei‐Hai Fang
- Key Laboratory of Theoretical and Computational PhotochemistryMinistry of EducationCollege of ChemistryBeijing Normal University Beijing 100875 P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational PhotochemistryMinistry of EducationCollege of ChemistryBeijing Normal University Beijing 100875 P. R. China
| | - Qing‐Zheng Yang
- Institution Key Laboratory of RadiopharmaceuticalsCollege of ChemistryBeijing Normal University Beijing 100875 P. R. China
| |
Collapse
|