1
|
Kurahashi H, Umezawa M, Okubo K, Soga K. Pixel Screening in Lifetime-Based Temperature Mapping Using β-NaYF 4:Nd 3+,Yb 3+ by Time-Gated Near-Infrared Fluorescence Imaging on Deep Tissue in Live Mice. ACS APPLIED BIO MATERIALS 2024; 7:3821-3827. [PMID: 38787698 PMCID: PMC11190971 DOI: 10.1021/acsabm.4c00201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/24/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Near-infrared fluorescence (NIRF) thermometry is an emerging method for the noncontact measurement of in vivo deep temperatures. Fluorescence-lifetime-based methods are effective because they are unaffected by optical loss due to excitation or detection paths. Moreover, the physiological changes in body temperature in deep tissues and their pharmacological effects are yet to be fully explored. In this study, we investigated the potential application of the NIRF lifetime-based method for temperature measurement of in vivo deep tissues in the abdomen using rare-earth-based particle materials. β-NaYF4 particles codoped with Nd3+ and Yb3+ (excitation: 808 nm, emission: 980 nm) were used as NIRF thermometers, and their fluorescence decay curves were exponential. Slope linearity analysis (SLA), a screening method, was proposed to extract pixels with valid data. This method involves performing a linearity evaluation of the semilogarithmic plot of the decay curve collected at three delay times after cutting off the pulsed laser irradiation. After intragastric administration of the thermometer, the stomach temperature was monitored by using an NIRF time-gated imaging setup. Concurrently, a heater was attached to the lower abdomens of the mice under anesthesia. A decrease in the stomach temperature under anesthesia and its recovery via the heater indicated changes in the fluorescence lifetime of the thermometer placed inside the body. Thus, NaYF4:Nd3+/Yb3+ functions as a fluorescence thermometer that can measure in vivo temperature based on the temperature dependence of the fluorescence lifetime at 980 nm under 808 nm excitation. This study demonstrated the ability of a rare-earth-based NIRF thermometer to measure deep tissues in live mice, with the proposed SLA method for excluding the noisy deviations from the analysis for measuring temperature using the NIRF lifetime of a rare-earth-based thermometer.
Collapse
Affiliation(s)
- Hiroyuki Kurahashi
- Department of Materials
Science
and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Tokyo 125-8585, Katsushika, Japan
| | - Masakazu Umezawa
- Department of Materials
Science
and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Tokyo 125-8585, Katsushika, Japan
| | | | - Kohei Soga
- Department of Materials
Science
and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Tokyo 125-8585, Katsushika, Japan
| |
Collapse
|
2
|
Grzyb T, Martín IR, Popescu R. The use of energy looping between Tm 3+ and Er 3+ ions to obtain an intense upconversion under the 1208 nm radiation and its use in temperature sensing. NANOSCALE 2024; 16:1692-1702. [PMID: 38131190 DOI: 10.1039/d3nr04418a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The upconversion phenomenon allows for the emission of nanoparticles (NPs) under excitation with near-infrared (NIR) light. Such property is demanded in biology and medicine to detect or treat diseases such as tumours. The transparency of biological systems for NIR light is limited to three spectral ranges, called biological windows. However, the most frequently used excitation laser to obtain upconversion is out of these ranges, with a wavelength of around 975 nm. In this article, we show an alternative - Tm3+/Er3+-doped NPs that can convert 1208 nm excitation radiation, which is in the range of the 2nd biological window, to visible light within the 1st biological window. The spectroscopic properties of the core@shell NaYF4:Tm3+@NaYF4 and NaYF4:Er3+,Tm3+@NaYF4 NPs revealed a complex mechanism responsible for the observed upconversion. To explain emission in the studied NPs, we propose an energy looping mechanism: a sequence of ground state absorption, energy transfers and cross-relaxation (CR) processes between Tm3+ ions. Next, the excited Tm3+ ions transfer the absorbed energy to Er3+ ions, which results in green, red and NIR emission at 526, 546, 660, 698, 802 and 982 nm. The ratio between these bands is temperature-dependent and can be used in remote optical thermometers with high relative temperature sensitivity, up to 2.37%/°C at 57 °C. The excitation and emission properties of the studied NPs fall within 1st and 2nd biological windows, making them promising candidates for studies in biological systems.
Collapse
Affiliation(s)
- Tomasz Grzyb
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Inocencio R Martín
- Departamento de Fisica, Universidad de La Laguna, Instituto de Materiales y Nanotecnología, 38200 San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - Radian Popescu
- Laboratory for Electron Microscopy, Karlsruhe Institute of Technology, Engesserstrasse 7, 76131 Karlsruhe, Germany
| |
Collapse
|
3
|
Zhu X, Wang X, Zhang H, Zhang F. Luminescence Lifetime Imaging Based on Lanthanide Nanoparticles. Angew Chem Int Ed Engl 2022; 61:e202209378. [DOI: 10.1002/anie.202209378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Xinyan Zhu
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Xiaohan Wang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Hongxin Zhang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Fan Zhang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| |
Collapse
|
4
|
Zhu X, Wang X, Zhang H, Zhang F. Luminescence Lifetime Imaging Based on Lanthanide Nanoparticles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xinyan Zhu
- Fudan University chemistry department Room 631, Advanced materials lab,2205 songhu road, yangpu district,Shanghai 200438 Shanghai CHINA
| | | | | | - Fan Zhang
- Fudan University Chemistry 2205 Songhu Road 200438 Shanghai CHINA
| |
Collapse
|
5
|
Richards BS, Hudry D, Busko D, Turshatov A, Howard IA. Photon Upconversion for Photovoltaics and Photocatalysis: A Critical Review. Chem Rev 2021; 121:9165-9195. [PMID: 34327987 DOI: 10.1021/acs.chemrev.1c00034] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Opportunities for enhancing solar energy harvesting using photon upconversion are reviewed. The increasing prominence of bifacial solar cells is an enabling factor for the implementation of upconversion, however, when the realistic constraints of current best-performing silicon devices are considered, many challenges remain before silicon photovoltaics operating under nonconcentrated sunlight can be enhanced via lanthanide-based upconversion. A photophysical model reveals that >1-2 orders of magnitude increase in the intermediate state lifetime, energy transfer rate, or generation rate would be needed before such solar upconversion could start to become efficient. Methods to increase the generation rate such as the use of cosensitizers to expand the absorption range and the use of plasmonics or photonic structures are reviewed. The opportunities and challenges for these approaches (or combinations thereof) to achieve efficient solar upconversion are discussed. The opportunity for enhancing the performance of technologies such as luminescent solar concentrators by combining upconversion together with micro-optics is also reviewed. Triplet-triplet annihilation-based upconversion is progressing steadily toward being relevant to lower-bandgap solar cells. Looking toward photocatalysis, photophysical modeling indicates that current blue-to-ultraviolet lanthanide upconversion systems are very inefficient. However, hope remains in this direction for organic upconversion enhancing the performance of visible-light-active photocatalysts.
Collapse
Affiliation(s)
- Bryce S Richards
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131 Karlsruhe, Germany
| | - Damien Hudry
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Dmitry Busko
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Andrey Turshatov
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Ian A Howard
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131 Karlsruhe, Germany
| |
Collapse
|
6
|
Liu X, Wu W, Cui D, Chen X, Li W. Functional Micro-/Nanomaterials for Multiplexed Biodetection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004734. [PMID: 34137090 DOI: 10.1002/adma.202004734] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/08/2020] [Indexed: 05/24/2023]
Abstract
When analyzing biological phenomena and processes, multiplexed biodetection has many advantages over single-factor biodetection and is highly relevant to both human health issues and advancements in the life sciences. However, many key problems with current multiplexed biodetection strategies remain unresolved. Herein, the main issues are analyzed and summarized: 1) generating sufficient signal to label targets, 2) improving the signal-to-noise ratio to ensure total detection sensitivity, and 3) simplifying the detection process to reduce the time and labor costs of multiple target detection. Then, available solutions made possible by designing and controlling the properties of micro- and nanomaterials are introduced. The aim is to emphasize the role that micro-/nanomaterials can play in the improvement of multiplexed biodetection strategies. Through analyzing existing problems, introducing state-of-the-art developments regarding relevant materials, and discussing future directions of the field, it is hopeful to help promote necessary developments in multiplexed biodetection and associated scientific research.
Collapse
Affiliation(s)
- Xinyi Liu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Weijie Wu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Daxiang Cui
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore
| | - Wanwan Li
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
7
|
Perrigue PM, Murray RA, Mielcarek A, Henschke A, Moya SE. Degradation of Drug Delivery Nanocarriers and Payload Release: A Review of Physical Methods for Tracing Nanocarrier Biological Fate. Pharmaceutics 2021; 13:770. [PMID: 34064155 PMCID: PMC8224277 DOI: 10.3390/pharmaceutics13060770] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022] Open
Abstract
Nanoformulations offer multiple advantages over conventional drug delivery, enhancing solubility, biocompatibility, and bioavailability of drugs. Nanocarriers can be engineered with targeting ligands for reaching specific tissue or cells, thus reducing the side effects of payloads. Following systemic delivery, nanocarriers must deliver encapsulated drugs, usually through nanocarrier degradation. A premature degradation, or the loss of the nanocarrier coating, may prevent the drug's delivery to the targeted tissue. Despite their importance, stability and degradation of nanocarriers in biological environments are largely not studied in the literature. Here we review techniques for tracing the fate of nanocarriers, focusing on nanocarrier degradation and drug release both intracellularly and in vivo. Intracellularly, we will discuss different fluorescence techniques: confocal laser scanning microscopy, fluorescence correlation spectroscopy, lifetime imaging, flow cytometry, etc. We also consider confocal Raman microscopy as a label-free technique to trace colocalization of nanocarriers and drugs. In vivo we will consider fluorescence and nuclear imaging for tracing nanocarriers. Positron emission tomography and single-photon emission computed tomography are used for a quantitative assessment of nanocarrier and payload biodistribution. Strategies for dual radiolabelling of the nanocarriers and the payload for tracing carrier degradation, as well as the efficacy of the payload delivery in vivo, are also discussed.
Collapse
Affiliation(s)
- Patrick M. Perrigue
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland; (P.M.P.); (A.M.); (A.H.)
| | - Richard A. Murray
- Instituto Biofisika (UPV/EHU, CSIC), Barrio Sarriena S/N, 48940 Leioa, Spain;
| | - Angelika Mielcarek
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland; (P.M.P.); (A.M.); (A.H.)
| | - Agata Henschke
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland; (P.M.P.); (A.M.); (A.H.)
| | - Sergio E. Moya
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland; (P.M.P.); (A.M.); (A.H.)
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain
| |
Collapse
|
8
|
Qiao Y, Qiao S, Yu X, Min Q, Pi C, Qiu J, Ma H, Yi J, Zhan Q, Xu X. Plant tissue imaging with bipyramidal upconversion nanocrystals by introducing Tm 3+ ions as energy trapping centers. NANOSCALE 2021; 13:8181-8187. [PMID: 33884383 DOI: 10.1039/d0nr07399g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plant cell imaging is critical for agricultural production and plant pathology study. Advanced upconversion nanoparticles (UCNPs) are being developed as fluorescent probes for imaging cells and tissues in vivo and in vitro. Unfortunately, the thick cellulosic walls as barriers together with hemicelluloses and pectin hinder the entrance of macromolecules into the epidermal plant cell. Hence, realizing satisfactory temporal and spatial resolution with UCNPs remains an arduous task. Here, bipyramidal LiErF4:1%Tm3+@LiYF4 core-shell UCNPs with a super-bright red emission upon 980 nm laser excitation are explored, where the introduction of Tm3+ ions permits alleviation of the energy loss at defective sites and a significant improvement of the upconversion output. The as-obtained bipyramidal UCNPs could readily puncture plant cell walls and further penetrate into cell membranes, facilitating improved tissue imaging of cellular internalization, as demonstrated with the luminescence images obtained by multiphoton laser-scanning microscopy. Hence our work opens up a new avenue for exploring effective upconversion nanoparticles for achieving high resolution imaging of plant tissues.
Collapse
Affiliation(s)
- Yufang Qiao
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Grzyb T, Kamiński P, Przybylska D, Tymiński A, Sanz-Rodríguez F, Haro Gonzalez P. Manipulation of up-conversion emission in NaYF 4 core@shell nanoparticles doped by Er 3+, Tm 3+, or Yb 3+ ions by excitation wavelength-three ions-plenty of possibilities. NANOSCALE 2021; 13:7322-7333. [PMID: 33889899 DOI: 10.1039/d0nr07136f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanoparticles (NPs) based on host compound NaYF4 with core@shell structures were synthesised by the precipitation reaction in high-boiling point octadecene/oleic acid solvent. Four laser wavelengths were used (808, 975, 1208, or 1532 nm) for excitation of the obtained NPs. The resulting emission and mechanisms responsible for spectroscopic properties were studied in detail. Depending on NP compositions, i.e. type of doping ion (Er3+, Tm3+, or Yb3+) or presence of dopants in the same or different phases, adjustable up-conversion (UC) could be obtained with emission peaks covering the visible to near-infrared range (475 to 1625 nm). The presented results demonstrated multifunctionality of the prepared NPs. NaYF4:2%Tm3+@NaYF4 NPs exhibited emission at 700 and 1450 nm under 808 nm laser excitation or 800 and 1625 nm emission under 1208 nm laser radiation, as a result of ground- and excited-state absorption processes (GSA and ESA, respectively). However, NaYF4:5%Er3+,2%Tm3+@NaYF4 NPs showed the most interesting properties, as they can convert all studied laser wavelengths due to the absorption of Tm3+ (808, 1208 nm) or Er3+ ions (808, 975, 1532 nm), revealing a photon avalanche process under 1208 nm laser excitation, as well as GSA and ESA at other excitation wavelengths. The NaYF4:2%Tm3+@NaYF4:5%Er3+ NPs revealed the resultant emission properties, as the dopant ions were separated within core and shell phases. The NaYF4:18%Yb3+,2%Tm3+@NaYF4 and NaYF4:18%Yb3+,2%Tm3+@NaYF4:5%Er3+ samples showed the brightest emission, around 800 nm, under 975 nm excitation, though other laser wavelengths allowed for observation of luminescence, as well, especially in NPs with Er3+ in the outer shell, capable of UC under 1532 nm. The presented results highlight the unique and universal properties of lanthanide ions for designing luminescent NPs for a variety of potential applications, such as confocal microscopy.
Collapse
Affiliation(s)
- Tomasz Grzyb
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | | | | | | | | | | |
Collapse
|
10
|
Liu X, Chen ZH, Zhang H, Fan Y, Zhang F. Independent Luminescent Lifetime and Intensity Tuning of Upconversion Nanoparticles by Gradient Doping for Multiplexed Encoding. Angew Chem Int Ed Engl 2021; 60:7041-7045. [PMID: 33373075 DOI: 10.1002/anie.202015273] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Indexed: 01/31/2023]
Abstract
Luminescent materials with engineered optical properties have been developed for multiplexed labeling detection, where encoding capacity plays a pivotal role in the efficiency. However, multi-dimensional optical identities are usually not independent which essentially hinder the practical encoding numbers to access theoretical capacity. In this work, we carefully studied the sensitizer gradient doping structure in near-infrared (NIR) excitable upconversion nanoparticles (UCNPs) and managed to achieve independent emission intensity and lifetime tuning. With the orthogonally tunability, it breaks the constraint of intensity (k) and lifetime (n) correlation and expands the practical encoding number to theoretical value as (k+1)n -1 in binary encoding. This method can also be combined with previous lifetime engineering as well to realize high level multiplexing.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Zi-Han Chen
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Hongxin Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Yong Fan
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| |
Collapse
|
11
|
Liu X, Chen Z, Zhang H, Fan Y, Zhang F. Independent Luminescent Lifetime and Intensity Tuning of Upconversion Nanoparticles by Gradient Doping for Multiplexed Encoding. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015273] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xuan Liu
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Zi‐Han Chen
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Hongxin Zhang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Yong Fan
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Fan Zhang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| |
Collapse
|
12
|
Casar JR, McLellan CA, Siefe C, Dionne JA. Lanthanide-Based Nanosensors: Refining Nanoparticle Responsiveness for Single Particle Imaging of Stimuli. ACS PHOTONICS 2021; 8:3-17. [PMID: 34307765 PMCID: PMC8297747 DOI: 10.1021/acsphotonics.0c00894] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Lanthanide nanoparticles (LNPs) are promising sensors of chemical, mechanical, and temperature changes; they combine the narrow-spectral emission and long-lived excited states of individual lanthanide ions with the high spatial resolution and controlled energy transfer of nanocrystalline architectures. Despite considerable progress in optimizing LNP brightness and responsiveness for dynamic sensing, detection of stimuli with a spatial resolution approaching that of individual nanoparticles remains an outstanding challenge. Here, we highlight the existing capabilities and outstanding challenges of LNP sensors, en-route to nanometer-scale, single particle sensor resolution. First, we summarize LNP sensor read-outs, including changes in emission wavelength, lifetime, intensity, and spectral ratiometric values that arise from modified energy transfer networks within nanoparticles. Then, we describe the origins of LNP sensor imprecision, including sensitivity to competing conditions, interparticle heterogeneities, such as the concentration and distribution of dopant ions, and measurement noise. Motivated by these sources of signal variance, we describe synthesis characterization feedback loops to inform and improve sensor precision, and introduce noise-equivalent sensitivity as a figure of merit of LNP sensors. Finally, we project the magnitudes of chemical and pressure stimulus resolution achievable with single LNPs at nanoscale resolution. Our perspective provides a roadmap for translating ensemble LNP sensing capabilities to the single particle level, enabling nanometer-scale sensing in biology, medicine, and sustainability.
Collapse
Affiliation(s)
- Jason R Casar
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Claire A McLellan
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Chris Siefe
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Jennifer A Dionne
- Department of Materials Science and Engineering and Department of Radiology, Molecular Imaging Program, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
13
|
Lei Z, Zhang F. Molecular Engineering of NIR‐II Fluorophores for Improved Biomedical Detection. Angew Chem Int Ed Engl 2021; 60:16294-16308. [DOI: 10.1002/anie.202007040] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Zuhai Lei
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers Shanghai Key Laboratory of Molecular Catalysis and iChEM Fudan University Shanghai 200433 P. R. China
- School of Pharmacy Fudan University Shanghai 200433 P. R. China
| | - Fan Zhang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers Shanghai Key Laboratory of Molecular Catalysis and iChEM Fudan University Shanghai 200433 P. R. China
| |
Collapse
|
14
|
Lei Z, Zhang F. Molecular Engineering of NIR‐II Fluorophores for Improved Biomedical Detection. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202007040] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Zuhai Lei
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers Shanghai Key Laboratory of Molecular Catalysis and iChEM Fudan University Shanghai 200433 P. R. China
- School of Pharmacy Fudan University Shanghai 200433 P. R. China
| | - Fan Zhang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers Shanghai Key Laboratory of Molecular Catalysis and iChEM Fudan University Shanghai 200433 P. R. China
| |
Collapse
|
15
|
Chen F, Lu Q, Huang L, Liu B, Liu M, Zhang Y, Liu J. DNA Triplex and Quadruplex Assembled Nanosensors for Correlating K
+
and pH in Lysosomes. Angew Chem Int Ed Engl 2021; 60:5453-5458. [PMID: 33244829 DOI: 10.1002/anie.202013302] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Feng Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research College of Chemistry and Chemical Engineering Hunan Normal University Changsha Hunan Province China
| | - Qiujun Lu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research College of Chemistry and Chemical Engineering Hunan Normal University Changsha Hunan Province China
| | - Linna Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research College of Chemistry and Chemical Engineering Hunan Normal University Changsha Hunan Province China
| | - Biwu Liu
- Department of Chemistry Waterloo Institute for Nanotechnology University of Waterloo 200 University Avenue West Waterloo Ontario N2L 3G1 Canada
| | - Meiling Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research College of Chemistry and Chemical Engineering Hunan Normal University Changsha Hunan Province China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research College of Chemistry and Chemical Engineering Hunan Normal University Changsha Hunan Province China
| | - Juewen Liu
- Department of Chemistry Waterloo Institute for Nanotechnology University of Waterloo 200 University Avenue West Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
16
|
DNA Triplex and Quadruplex Assembled Nanosensors for Correlating K
+
and pH in Lysosomes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013302] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
17
|
Zhang Q, Yu P, Fan Y, Sun C, He H, Liu X, Lu L, Zhao M, Zhang H, Zhang F. Bright and Stable NIR‐II J‐Aggregated AIE Dibodipy‐Based Fluorescent Probe for Dynamic In Vivo Bioimaging. Angew Chem Int Ed Engl 2020; 60:3967-3973. [DOI: 10.1002/anie.202012427] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Indexed: 01/14/2023]
Affiliation(s)
- Qisong Zhang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Peng Yu
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Yong Fan
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Caixia Sun
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Haisheng He
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Xuan Liu
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Lingfei Lu
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Mengyao Zhao
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Hongxin Zhang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Fan Zhang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| |
Collapse
|
18
|
Zhang Q, Yu P, Fan Y, Sun C, He H, Liu X, Lu L, Zhao M, Zhang H, Zhang F. Bright and Stable NIR‐II J‐Aggregated AIE Dibodipy‐Based Fluorescent Probe for Dynamic In Vivo Bioimaging. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012427] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Qisong Zhang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Peng Yu
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Yong Fan
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Caixia Sun
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Haisheng He
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Xuan Liu
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Lingfei Lu
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Mengyao Zhao
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Hongxin Zhang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Fan Zhang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| |
Collapse
|
19
|
Jarockyte G, Karabanovas V, Rotomskis R, Mobasheri A. Multiplexed Nanobiosensors: Current Trends in Early Diagnostics. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6890. [PMID: 33276535 PMCID: PMC7729484 DOI: 10.3390/s20236890] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023]
Abstract
The ever-growing demand for fast, cheap, and reliable diagnostic tools for personalised medicine is encouraging scientists to improve existing technology platforms and to create new methods for the detection and quantification of biomarkers of clinical significance. Simultaneous detection of multiple analytes allows more accurate assessment of changes in biomarker expression and offers the possibility of disease diagnosis at the earliest stages. The concept of multiplexing, where multiple analytes can be detected in a single sample, can be tackled using several types of nanomaterial-based biosensors. Quantum dots are widely used photoluminescent nanoparticles and represent one of the most frequent choices for different multiplex systems. However, nanoparticles that incorporate gold, silver, and rare earth metals with their unique optical properties are an emerging perspective in the multiplexing field. In this review, we summarise progress in various nanoparticle applications for multiplexed biomarkers.
Collapse
Affiliation(s)
- Greta Jarockyte
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania; (G.J.); (A.M.)
- Biomedical Physics Laboratory, National Cancer Institute, Baublio 3b, LT-08406 Vilnius, Lithuania;
| | - Vitalijus Karabanovas
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania; (G.J.); (A.M.)
- Biomedical Physics Laboratory, National Cancer Institute, Baublio 3b, LT-08406 Vilnius, Lithuania;
| | - Ricardas Rotomskis
- Biomedical Physics Laboratory, National Cancer Institute, Baublio 3b, LT-08406 Vilnius, Lithuania;
| | - Ali Mobasheri
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania; (G.J.); (A.M.)
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, FI-90014 Oulu, Finland
- Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| |
Collapse
|
20
|
Liu Y, Liu J, Chen D, Wang X, Zhang Z, Yang Y, Jiang L, Qi W, Ye Z, He S, Liu Q, Xi L, Zou Y, Wu C. Fluorination Enhances NIR‐II Fluorescence of Polymer Dots for Quantitative Brain Tumor Imaging. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007886] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Ye Liu
- College of Chemistry and Chemical Engineering, Molecular Imaging Research Center Central South University Changsha 410083 China
| | - Jinfeng Liu
- College of Chemistry and Chemical Engineering, Molecular Imaging Research Center Central South University Changsha 410083 China
| | - Dandan Chen
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Xiaosha Wang
- College of Chemistry and Chemical Engineering, Molecular Imaging Research Center Central South University Changsha 410083 China
| | - Zhe Zhang
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Yicheng Yang
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Lihui Jiang
- College of Chemistry and Chemical Engineering, Molecular Imaging Research Center Central South University Changsha 410083 China
| | - Weizhi Qi
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Ziyuan Ye
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Shuqing He
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Quanying Liu
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Lei Xi
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Yingping Zou
- College of Chemistry and Chemical Engineering, Molecular Imaging Research Center Central South University Changsha 410083 China
| | - Changfeng Wu
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
21
|
Liu Y, Liu J, Chen D, Wang X, Zhang Z, Yang Y, Jiang L, Qi W, Ye Z, He S, Liu Q, Xi L, Zou Y, Wu C. Fluorination Enhances NIR-II Fluorescence of Polymer Dots for Quantitative Brain Tumor Imaging. Angew Chem Int Ed Engl 2020; 59:21049-21057. [PMID: 32767727 DOI: 10.1002/anie.202007886] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/15/2020] [Indexed: 12/24/2022]
Abstract
Here, we describe a fluorination strategy for semiconducting polymers for the development of highly bright second near-infrared region (NIR-II) probes. Tetrafluorination yielded a fluorescence QY of 3.2 % for the polymer dots (Pdots), over a 3-fold enhancement compared to non-fluorinated counterparts. The fluorescence enhancement was attributable to a nanoscale fluorous effect in the Pdots that maintained the molecular planarity and minimized the structure distortion between the excited state and ground state, thus reducing the nonradiative relaxations. By performing through-skull and through-scalp imaging of the brain vasculature of live mice, we quantitatively analyzed the vascular morphology of transgenic brain tumors in terms of the vessel lengths, vessel branches, and vessel symmetry, which showed statistically significant differences from the wild type animals. The bright NIR-II Pdots obtained through fluorination chemistry provide insightful information for precise diagnosis of the malignancy of the brain tumor.
Collapse
Affiliation(s)
- Ye Liu
- College of Chemistry and Chemical Engineering, Molecular Imaging Research Center, Central South University, Changsha, 410083, China
| | - Jinfeng Liu
- College of Chemistry and Chemical Engineering, Molecular Imaging Research Center, Central South University, Changsha, 410083, China
| | - Dandan Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Xiaosha Wang
- College of Chemistry and Chemical Engineering, Molecular Imaging Research Center, Central South University, Changsha, 410083, China
| | - Zhe Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yicheng Yang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Lihui Jiang
- College of Chemistry and Chemical Engineering, Molecular Imaging Research Center, Central South University, Changsha, 410083, China
| | - Weizhi Qi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Ziyuan Ye
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Shuqing He
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Quanying Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Lei Xi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yingping Zou
- College of Chemistry and Chemical Engineering, Molecular Imaging Research Center, Central South University, Changsha, 410083, China
| | - Changfeng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
22
|
Skripka A, Cheng T, Jones CMS, Marin R, Marques-Hueso J, Vetrone F. Spectral characterization of LiYbF 4 upconverting nanoparticles. NANOSCALE 2020; 12:17545-17554. [PMID: 32812995 DOI: 10.1039/d0nr04357e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In light of the recent developments on Yb3+-based upconverting rare-earth nanoparticles (RENPs), we have systematically explored the spectral features of LiYbF4:RE3+/LiYF4 core/shell RENPs doped with various amounts of Tm3+, Er3+, or Ho3+. Tm3+-RENPs displayed photoluminescence from the UV to near-infrared (NIR), and the dominant high-photon-order upconversion emission of these RENPs was tunable by Tm3+ doping. Similarly, Er3+- and Ho3+-RENPs with green and red upconversion showed wide color tuning, depending on the doping amount and excitation power density. From steady-state power plot and photoluminescence decay studies we have observed respective changes in upconversion photon order and average lifetime that attest to a number of cross-relaxation processes occurring at higher RE3+ doping concentration. Particularly in the case of Tm3+-RENPs, cross-relaxation promotes four- and five-photon order upconversion emission in the UV and blue spectral regions. The quantum yield of high-order upconversion emission was on par with classic Yb3+/Tm3+-doped systems, yet due to the high number of sensitizer ions in the LiYbF4 host these RENPs are expected to be brighter and thus better suited for applications such as controlled drug delivery or optogenetics. Overall, LiYbF4:RE3+/LiYF4 RENPs are promising systems to effectively generate high-order upconversion emissions, owing to excitation energy confinement within the Yb3+ network and its efficient funneling to the activator dopants.
Collapse
Affiliation(s)
- Artiom Skripka
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, Université du Québec, 1650 Boul. Lionel-Boulet, Varennes, Québec J3X 1S2, Canada
| | - Ting Cheng
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, Université du Québec, 1650 Boul. Lionel-Boulet, Varennes, Québec J3X 1S2, Canada
| | - Callum M S Jones
- Institute of Sensors, Signals and Systems, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Riccardo Marin
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, Université du Québec, 1650 Boul. Lionel-Boulet, Varennes, Québec J3X 1S2, Canada and Fluorescence Imaging Group (FIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain.
| | - Jose Marques-Hueso
- Institute of Sensors, Signals and Systems, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Fiorenzo Vetrone
- Fluorescence Imaging Group (FIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain.
| |
Collapse
|
23
|
Wang Z, Xing B. Near-Infrared Multipurpose Lanthanide-Imaging Nanoprobes. Chem Asian J 2020; 15:2076-2091. [PMID: 32424994 DOI: 10.1002/asia.202000493] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/16/2020] [Indexed: 01/12/2023]
Abstract
Optical imaging plays a growing role in modern biomedical research and clinical applications due to its high sensitivity, superb spatiotemporal resolution and minimal hazards. Lanthanide-doped nanoparticles (LDNPs), as a classical category of luminescent materials, exhibit promising photostability, near-infrared (NIR)-excited frequency up-/down-converting capabilities, emission fine-tuning and multispectral features, which have greatly promoted the endeavors of deeper and clearer diagnostics in complex living conditions. This review focuses on the recent advances of LDNP-based multipurpose imaging studies using upconversion, downshifting, lifetime, photoacoustic and multimodal nanoprobes in the NIR (650-1000 nm) and the second near-infrared window (NIR-II, 1000-1700 nm). The principle and design of various functional, activatable, multiplexing or multimodal lanthanide-imaging nanoprobes (LINPs) as well as representative biophotonic applications are summarized in detail. In addition, the future perspectives and challenges for facilitating LINPs to clinical translations are discussed.
Collapse
Affiliation(s)
- Zhimin Wang
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
24
|
Yu Z, Eich C, Cruz LJ. Recent Advances in Rare-Earth-Doped Nanoparticles for NIR-II Imaging and Cancer Theranostics. Front Chem 2020; 8:496. [PMID: 32656181 PMCID: PMC7325968 DOI: 10.3389/fchem.2020.00496] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Fluorescence imaging in the second near infrared window (NIR-II, 1,000-1,700 nm) has been widely used in cancer diagnosis and treatment due to its high spatial resolution and deep tissue penetration depths. In this work, recent advances in rare-earth-doped nanoparticles (RENPs)-a novel kind of NIR-II nanoprobes-are presented. The main focus of this study is on the modification of RENPs and their applications in NIR-II in vitro and in vivo imaging and cancer theranostics. Finally, the perspectives and challenges of NIR-II RENPs are discussed.
Collapse
Affiliation(s)
| | | | - Luis J. Cruz
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
25
|
Recent progress in NIR-II emitting lanthanide-based nanoparticles and their biological applications. J RARE EARTH 2020. [DOI: 10.1016/j.jre.2020.01.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Ge X, Wei R, Sun L. Lanthanide nanoparticles with efficient near-infrared-II emission for biological applications. J Mater Chem B 2020; 8:10257-10270. [DOI: 10.1039/d0tb01745k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We discuss designing efficient NIR-II-emitting lanthanide NPs and summarize their recent progress in bioimaging, therapy, and biosensing, as well as their limitations and future opportunities.
Collapse
Affiliation(s)
- Xiaoqian Ge
- Research Center of Nano Science and Technology
- College of Sciences
- Shanghai University
- Shanghai 200444
- China
| | - Ruoyan Wei
- Research Center of Nano Science and Technology
- College of Sciences
- Shanghai University
- Shanghai 200444
- China
| | - Lining Sun
- Research Center of Nano Science and Technology
- College of Sciences
- Shanghai University
- Shanghai 200444
- China
| |
Collapse
|
27
|
Song X, Li S, Guo H, You W, Shang X, Li R, Tu D, Zheng W, Chen Z, Yang H, Chen X. Graphene‐Oxide‐Modified Lanthanide Nanoprobes for Tumor‐Targeted Visible/NIR‐II Luminescence Imaging. Angew Chem Int Ed Engl 2019; 58:18981-18986. [DOI: 10.1002/anie.201909416] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/10/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Xiaorong Song
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian 350002 China
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyState Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University Fuzhou Fujian 350116 China
| | - Shihua Li
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyState Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University Fuzhou Fujian 350116 China
| | - Hanhan Guo
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Wenwu You
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Xiaoying Shang
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Renfu Li
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Datao Tu
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Wei Zheng
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Zhuo Chen
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyState Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University Fuzhou Fujian 350116 China
| | - Xueyuan Chen
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian 350002 China
| |
Collapse
|
28
|
Song X, Li S, Guo H, You W, Shang X, Li R, Tu D, Zheng W, Chen Z, Yang H, Chen X. Graphene‐Oxide‐Modified Lanthanide Nanoprobes for Tumor‐Targeted Visible/NIR‐II Luminescence Imaging. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909416] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Xiaorong Song
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian 350002 China
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyState Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University Fuzhou Fujian 350116 China
| | - Shihua Li
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyState Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University Fuzhou Fujian 350116 China
| | - Hanhan Guo
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Wenwu You
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Xiaoying Shang
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Renfu Li
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Datao Tu
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Wei Zheng
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Zhuo Chen
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyState Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University Fuzhou Fujian 350116 China
| | - Xueyuan Chen
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian 350002 China
| |
Collapse
|