1
|
Lang SM, Bernhardt TM, Bakker JM, Barnett RN, Landman U. Cluster size dependent coordination of formate to free manganese oxide clusters. Phys Chem Chem Phys 2023; 25:32166-32172. [PMID: 37986571 PMCID: PMC10686260 DOI: 10.1039/d3cp04035f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
The interaction of free manganese oxide clusters, MnxOy+ (x = 1-9, y = 0-12), with formic acid was studied via infrared multiple-photon dissociation (IR-MPD) spectroscopy together with calculations using density functional theory (DFT). Clusters containing only one Mn atom, such as MnO2+ and MnO4+, bind formic acid as an intact molecule in both the cis- and trans-configuration. In contrast, all clusters containing two or more manganese atoms deprotonate the acid's hydroxyl group. The coordination of the resulting formate group is strongly cluster-size-dependent according to supporting DFT calculations for selected model systems. For Mn2O2+ the co-existence of two isomers with the formate bound in a bidentate bridging and chelating configurations, respectively, is found, whereas for Mn2O4+ the bidentate chelating configuration is preferred. In contrast, the bidentate bridging structure is energetically considerably more favorable for Mn4O4+. This binding motif stabilizes the 2D ring structure of the core of the Mn4O4+ cluster with respect to the 3D cubic geometry of the Mn4O4+ cluster core.
Collapse
Affiliation(s)
- Sandra M Lang
- Institute of Surface Chemistry and Catalysis, University of Ulm, Albert-Einstein-Allee 47, 89069 Ulm, Germany.
| | - Thorsten M Bernhardt
- Institute of Surface Chemistry and Catalysis, University of Ulm, Albert-Einstein-Allee 47, 89069 Ulm, Germany.
| | - Joost M Bakker
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Robert N Barnett
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332-0430, USA
| | - Uzi Landman
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332-0430, USA
| |
Collapse
|
2
|
Lang SM, Bernhardt TM, Bakker JM, Yoon B, Landman U. Vibrational spectroscopy of free di-manganese oxide cluster complexes with di-hydrogen. Mol Phys 2023. [DOI: 10.1080/00268976.2023.2192306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Sandra M. Lang
- Institute for Surface Chemistry and Catalysis, University of Ulm, Ulm, Germany
| | | | - Joost M. Bakker
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Nijmegen, The Netherlands
| | - Bokwon Yoon
- School of Physics, Georgia Institute of Technology, Atlanta, USA
| | - Uzi Landman
- School of Physics, Georgia Institute of Technology, Atlanta, USA
| |
Collapse
|
3
|
Lang SM, Helzel I, Bernhardt TM, Barnett RN, Landman U. Spin-Gated Selectivity of the Water Oxidation Reaction Mediated by Free Pentameric Ca xMn 5-xO 5+ Clusters. J Am Chem Soc 2022; 144:15339-15347. [PMID: 35943864 DOI: 10.1021/jacs.2c06562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report on the first preparation of isolated ligand-free CaMn4O5+ gas-phase clusters, as well as other pentameric CaxMn5-xO5+ (x = 0-4) clusters with varying Ca contents, which serve as molecular models of the natural CaMn4O5 inorganic cluster in photosystem II. Ion trap reactivity studies with D2O and H218O reveal a pronounced cluster composition-dependent ability to mediate the oxidation of water to hydrogen peroxide. First-principles density functional theory simulations elucidate the mechanism of water oxidation, proceeding via formation of a terminal oxyl radical followed by oxyl/hydroxy (O/OH) coupling. The critical coupling reaction step entails a single electron transfer from the oxyl radical to the accommodating cluster core with a concurrent O/OH coupling forming an adsorbed OOH intermediate group. The spin-conserving electron transfer step takes place when the spin of the transferred electron is aligned with the spins of the d-electrons of the Mn atoms in the cuboidal high-spin cluster isomer. The d-electrons provide a ferromagnetically ordered environment that facilitates the spin-gated selective electron transfer process, resulting in parallel-spin-exchange stabilization and a lowered transition state barrier for the coupling reaction involving the frontier orbitals of the oxyl and hydroxy reactant intermediates.
Collapse
Affiliation(s)
- Sandra M Lang
- Institute of Surface Chemistry and Catalysis, University of Ulm, Albert-Einstein-Allee 47, 89069 Ulm, Germany
| | - Irene Helzel
- Institute of Surface Chemistry and Catalysis, University of Ulm, Albert-Einstein-Allee 47, 89069 Ulm, Germany
| | - Thorsten M Bernhardt
- Institute of Surface Chemistry and Catalysis, University of Ulm, Albert-Einstein-Allee 47, 89069 Ulm, Germany
| | - Robert N Barnett
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, United States
| | - Uzi Landman
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, United States
| |
Collapse
|
4
|
Ohnishi Y, Yamamoto K, Takatsuka K. Suppression of Charge Recombination by Auxiliary Atoms in Photoinduced Charge Separation Dynamics with Mn Oxides: A Theoretical Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030755. [PMID: 35164020 PMCID: PMC8838452 DOI: 10.3390/molecules27030755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/16/2022]
Abstract
Charge separation is one of the most crucial processes in photochemical dynamics of energy conversion, widely observed ranging from water splitting in photosystem II (PSII) of plants to photoinduced oxidation reduction processes. Several basic principles, with respect to charge separation, are known, each of which suffers inherent charge recombination channels that suppress the separation efficiency. We found a charge separation mechanism in the photoinduced excited-state proton transfer dynamics from Mn oxides to organic acceptors. This mechanism is referred to as coupled proton and electron wave-packet transfer (CPEWT), which is essentially a synchronous transfer of electron wave-packets and protons through mutually different spatial channels to separated destinations passing through nonadiabatic regions, such as conical intersections, and avoided crossings. CPEWT also applies to collision-induced ground-state water splitting dynamics catalyzed by Mn4CaO5 cluster. For the present photoinduced charge separation dynamics by Mn oxides, we identified a dynamical mechanism of charge recombination. It takes place by passing across nonadiabatic regions, which are different from those for charge separations and lead to the excited states of the initial state before photoabsorption. This article is an overview of our work on photoinduced charge separation and associated charge recombination with an additional study. After reviewing the basic mechanisms of charge separation and recombination, we herein studied substituent effects on the suppression of such charge recombination by doping auxiliary atoms. Our illustrative systems are X–Mn(OH)2 tied to N-methylformamidine, with X=OH, Be(OH)3, Mg(OH)3, Ca(OH)3, Sr(OH)3 along with Al(OH)4 and Zn(OH)3. We found that the competence of suppression of charge recombination depends significantly on the substituents. The present study should serve as a useful guiding principle in designing the relevant photocatalysts.
Collapse
|
5
|
Iribarren I, Sánchez‐Sanz G, Elguero J, Alkorta I, Trujillo C. Reactivity of Coinage Metal Hydrides for the Production of H 2 Molecules. ChemistryOpen 2021; 10:724-730. [PMID: 34319005 PMCID: PMC8340072 DOI: 10.1002/open.202100108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/30/2021] [Indexed: 12/03/2022] Open
Abstract
The formation of molecular hydrogen as well as the possibility of using coinage metal hydrides as a prospective complex to produce hydrogen was presented in this work. Therefore, the reactions involving the interaction between two coinage metal hydrides, MH (M=Cu, Ag and Au, homo and heterodimers), were studied. The free energy profiles corresponding to aforementioned complexation were analysed by means of ab initio methods of quantum chemistry. The characteristics of these intermediates, final complexes and the electron density properties of the established interactions were discussed.
Collapse
Affiliation(s)
- Iñigo Iribarren
- Trinity Biomedical Sciences InstituteSchool of ChemistryThe University of DublinTrinity CollegeDublin 2Ireland
| | - Goar Sánchez‐Sanz
- Irish Centre of High-End ComputingGrand Canal QuayDublin 2 (Ireland)& School of ChemistryUniversity College Dublin BelfieldDublin 4Ireland
| | - José Elguero
- Instituto de Química Médica IQM-CSICJuan de la Cierva, 328006MadridSpain
| | - Ibon Alkorta
- Instituto de Química Médica IQM-CSICJuan de la Cierva, 328006MadridSpain
| | - Cristina Trujillo
- Trinity Biomedical Sciences InstituteSchool of ChemistryThe University of DublinTrinity CollegeDublin 2Ireland
| |
Collapse
|
6
|
Lang SM, Zimmermann N, Bernhardt TM, Barnett RN, Yoon B, Landman U. Size, Stoichiometry, Dimensionality, and Ca Doping of Manganese Oxide-Based Water Oxidation Clusters: An Oxyl/Hydroxy Mechanism for Oxygen-Oxygen Coupling. J Phys Chem Lett 2021; 12:5248-5255. [PMID: 34048261 DOI: 10.1021/acs.jpclett.1c01299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Gas-phase ion-trap reactivity experiments and density functional simulations reveal that water oxidation to H2O2 mediated by (calcium) manganese oxide clusters proceeds via formation of a terminal oxyl radical followed by oxyl/hydroxy O-O coupling. This mechanism is predicted to be energetically feasible for Mn2Oy+ (y = 2-4) and the binary CaMn3O4+, in agreement with the experimental observations. In contrast, the reaction does not proceed for the tetramanganese oxides Mn4Oy+ (y = 4-6) under these experimental conditions. This is attributed to the high fluxionality of the tetramanganese clusters, resulting in the instability of the terminal oxyl radical as well as an energetically unfavorable change of the spin state required for H2O2 formation. Ca doping, yielding a symmetry-broken lower-symmetry three-dimensional (3D) CaMn3O4+ cluster, results in structural stabilization of the oxyl radical configuration, accompanied by a favorable coupling between potential energy surfaces with different spin states, thus enabling the cluster-mediated water oxidation reaction and H2O2 formation.
Collapse
Affiliation(s)
- Sandra M Lang
- Institute of Surface Chemistry and Catalysis, University of Ulm, 89069 Ulm, Germany
| | - Nina Zimmermann
- Institute of Surface Chemistry and Catalysis, University of Ulm, 89069 Ulm, Germany
| | - Thorsten M Bernhardt
- Institute of Surface Chemistry and Catalysis, University of Ulm, 89069 Ulm, Germany
| | - Robert N Barnett
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, United States
| | - Bokwon Yoon
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, United States
| | - Uzi Landman
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, United States
| |
Collapse
|
7
|
Zimmermann N, Bernhardt TM, Bakker JM, Barnett RN, Landman U, Lang SM. Infrared Spectroscopy of Gas-Phase Mn xO y(CO 2) z+ Complexes. J Phys Chem A 2020; 124:1561-1566. [PMID: 31994885 DOI: 10.1021/acs.jpca.9b11258] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interaction of manganese oxide clusters MnxOy+ (x = 2-5, y ≥ x) with CO2 is studied via infrared multiple-photon dissociation spectroscopy (IR-MPD) in the spectral region of 630-1860 cm-1. Along with vibrational modes of the manganese oxide cluster core, two bands are observed around 1200-1450 cm-1 and they are assigned to the characteristic Fermi resonance of CO2 arising from anharmonic coupling between the symmetric stretch vibration and the overtone of the bending mode. The spectral position of the lower frequency band depends on the cluster size and the number of adsorbed CO2 molecules, whereas the higher frequency band is largely unaffected. Despite these effects, the observation of the Fermi dyad indicates only a small perturbation of the CO2 molecule. This finding is confirmed by the theoretical investigation of Mn2O2(CO2)+ revealing only small orbital mixing between the dimanganese oxide cluster and CO2, indicative of mainly electrostatic interaction.
Collapse
Affiliation(s)
- Nina Zimmermann
- Institute of Surface Chemistry and Catalysis , University of Ulm , 89069 Ulm , Germany
| | - Thorsten M Bernhardt
- Institute of Surface Chemistry and Catalysis , University of Ulm , 89069 Ulm , Germany
| | - Joost M Bakker
- Radboud University , Institute of Molecules and Materials, FELIX Laboratory , Toernooiveld 7 , 6525 ED Nijmegen , The Netherlands
| | - Robert N Barnett
- School of Physics , Georgia Institute of Technology , Atlanta , Georgia 30332-0430 , United States
| | - Uzi Landman
- School of Physics , Georgia Institute of Technology , Atlanta , Georgia 30332-0430 , United States
| | - Sandra M Lang
- Institute of Surface Chemistry and Catalysis , University of Ulm , 89069 Ulm , Germany
| |
Collapse
|