1
|
Huang Y, Zhou W, Xie L, Meng X, Li J, Gao J, Zhao G, Qin Y. Self-sacrificing and self-supporting biomass carbon anode-assisted water electrolysis for low-cost hydrogen production. Proc Natl Acad Sci U S A 2024; 121:e2316352121. [PMID: 39541345 PMCID: PMC11588069 DOI: 10.1073/pnas.2316352121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/04/2024] [Indexed: 11/16/2024] Open
Abstract
Electrooxidation of renewable and CO2-neutral biomass for low-cost hydrogen production is a promising and green technology. Various biomass platform molecules (BPMs) oxidation assisted hydrogen production technologies have obtained noticeable progress. However, BPMs anodic oxidation is highly dependent on electrocatalysts, and the oxidation mechanism is ambiguous. Meanwhile, the complexity and insolubility of natural biomass severely constrain the efficient utilization of biomass resources. Here, we develop a self-sacrificing and self-supporting carbon anode (SSCA) using waste corncobs. The combined results from multiple characterizations reveal that the structure-property-activity relationship of SSCA in carbon oxidation reaction (COR). Theoretical calculations demonstrate that carbon atoms with a high spin density play a pivotal role in reducing the adsorption energy of the reactive oxygen intermediate (*OH) during the transition from OH- to *OH, thereby promoting COR. Additionally, the HER||COR system allows driving a current density of 400 [Formula: see text] at 1.24 V at 80 °C, with a hydrogen production electric consumption of 2.96 kWh Nm-3 (H2). The strategy provides a ground-breaking perspective on the large-scale utilization of biomass and low-energy water electrolysis for hydrogen production.
Collapse
Affiliation(s)
- Yuming Huang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin150001, Heilongjiang, People’s Republic of China
| | - Wei Zhou
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin150001, Heilongjiang, People’s Republic of China
| | - Liang Xie
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin150001, Heilongjiang, People’s Republic of China
| | - Xiaoxiao Meng
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin150001, Heilongjiang, People’s Republic of China
| | - Junfeng Li
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin150001, Heilongjiang, People’s Republic of China
| | - Jihui Gao
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin150001, Heilongjiang, People’s Republic of China
| | - Guangbo Zhao
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin150001, Heilongjiang, People’s Republic of China
| | - Yukun Qin
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin150001, Heilongjiang, People’s Republic of China
| |
Collapse
|
2
|
Gidi L, Amalraj J, Tenreiro C, Ramírez G. Recent progress, trends, and new challenges in the electrochemical production of green hydrogen coupled to selective electrooxidation of 5-hydroxymethylfurfural (HMF). RSC Adv 2023; 13:28307-28336. [PMID: 37753399 PMCID: PMC10519153 DOI: 10.1039/d3ra05623f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
The production of clean electrical energy and the correct use of waste materials are two topics that currently concern humanity. In order to face both problems, extensive work has been done on the electrolytic production of green H2 coupled with the electrooxidative upgrading of biomass platform molecules. 5-Hydroxymethylfurfural (HMF) is obtained from forest waste biomass and can be selectively oxidized to 2,5-furandicarboxylic acid (FDCA) by electrochemical pathways. FDCA is an attractive precursor to polyethylene furanoate (PEF), with the potential to replace petroleum-based polyethylene terephthalate (PET). An integrated electrochemical system can simultaneously produce H2 and FDCA at a lower energy cost than that required for electrolytic water splitting. Here, the benefits of the electrochemical production of H2 and FDCA over other production methods are presented, as well as the innovative applications of each reaction product and the advantages of carrying out both reactions in a coupled system. The recently reported progress is disclosed, through an exploration of electrocatalyst materials used in simultaneous production, including the use of nickel foams (NF) as modification substrates, noble and non-noble metals, metal non-oxides, metal oxides, spinel oxides and the introduction of oxygen vacancies. Based on the latest trends, the next challenges associated with its large-scale production are proposed for its implementation in the industrial world. This work can offer a guideline for the detailed understanding of the electrooxidation of HMF towards FDCA with the production of H2, as well as the design of advanced electrocatalysts for the sustainable use of renewable resources.
Collapse
Affiliation(s)
- Leyla Gidi
- Laboratory of Material Science, Chemistry Institute of Natural Resources, Universidad de Talca P.O. Box 747 Talca 3460000 Chile
| | - John Amalraj
- Laboratory of Material Science, Chemistry Institute of Natural Resources, Universidad de Talca P.O. Box 747 Talca 3460000 Chile
| | - Claudio Tenreiro
- Industrial Technologies Department, Faculty of Engineering, Universidad de Talca Curicó 3340000 Chile
| | - Galo Ramírez
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile Av. Vicuña Mackenna 4860 Santiago 7820436 Chile
- Millenium Institute on Green Ammonia as Energy Vector (MIGA) Av. Vicuña Mackenna 4860, Macul Santiago 7820436 Chile
| |
Collapse
|
3
|
Zeng L, Chen Y, Sun M, Huang Q, Sun K, Ma J, Li J, Tan H, Li M, Pan Y, Liu Y, Luo M, Huang B, Guo S. Cooperative Rh-O 5/Ni(Fe) Site for Efficient Biomass Upgrading Coupled with H 2 Production. J Am Chem Soc 2023; 145:17577-17587. [PMID: 37253225 DOI: 10.1021/jacs.3c02570] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Designing efficient and durable bifunctional catalysts for 5-hydroxymethylfurfural (HMF) oxidation reaction (HMFOR) and hydrogen evolution reaction (HER) is desirable for the co-production of biomass-upgraded chemicals and sustainable hydrogen, which is limited by the competitive adsorption of hydroxyl species (OHads) and HMF molecules. Here, we report a class of Rh-O5/Ni(Fe) atomic site on nanoporous mesh-type layered double hydroxides with atomic-scale cooperative adsorption centers for highly active and stable alkaline HMFOR and HER catalysis. A low cell voltage of 1.48 V is required to achieve 100 mA cm-2 in an integrated electrolysis system along with excellent stability (>100 h). Operando infrared and X-ray absorption spectroscopic probes unveil that HMF molecules are selectively adsorbed and activated over the single-atom Rh sites and oxidized by in situ-formed electrophilic OHads species on neighboring Ni sites. Theoretical studies further demonstrate that the strong d-d orbital coupling interactions between atomic-level Rh and surrounding Ni atoms in the special Rh-O5/Ni(Fe) structure can greatly facilitate surface electronic exchange-and-transfer capabilities with the adsorbates (OHads and HMF molecules) and intermediates for efficient HMFOR and HER. We also reveal that the Fe sites in Rh-O5/Ni(Fe) structure can promote the electrocatalytic stability of the catalyst. Our findings provide new insights into catalyst design for complex reactions involving competitive adsorptions of multiple intermediates.
Collapse
Affiliation(s)
- Lingyou Zeng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yanju Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Qizheng Huang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Kaian Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Jingyuan Ma
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory (SSRF, ZJLab), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Jiong Li
- Shanghai Synchrotron Radiation Facilities, Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai 201204, China
| | - Hao Tan
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Menggang Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Yunqi Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Dasgupta B, Hausmann JN, Beltrán-Suito R, Kalra S, Laun K, Zebger I, Driess M, Menezes PW. A Facile Molecular Approach to Amorphous Nickel Pnictides and Their Reconstruction to Crystalline Potassium-Intercalated γ-NiOOH x Enabling High-Performance Electrocatalytic Water Oxidation and Selective Oxidation of 5-Hydroxymethylfurfural. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301258. [PMID: 37086146 DOI: 10.1002/smll.202301258] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/29/2023] [Indexed: 05/03/2023]
Abstract
The low-temperature molecular precursor approach can be beneficial to conventional solid-state methods, which require high temperatures and lead to relatively large crystalline particles. Herein, a novel, single-step, room-temperature preparation of amorphous nickel pnictide (NiE; EP, As) nanomaterials is reported, starting from NaOCE(dioxane)n and NiBr2 (thf)1.5 . During application for the oxygen evolution reaction (OER), the pnictide anions leach, and both materials fully reconstruct into nickel(III/IV) oxide phases (similar to γ-NiOOH) comprising edge-sharing (NiO6 ) layers with intercalated potassium ions and a d-spacing of 7.27 Å. Remarkably, the intercalated γ-NiOOHx phases are nanocrystalline, unlike the amorphous nickel pnictide precatalysts. This unconventional reconstruction is fast and complete, which is ascribed to the amorphous nature of the nanostructured NiE precatalysts. The obtained γ-NiOOHx can effectively catalyse the OER for 100 h at a high current density (400 mA cm-2 ) and achieves outstandingly high current densities (>600 mA cm-2 ) for the selective, value-added oxidation of 5-hydroxymethylfurfural (HMF). The NiP-derived γ-NiOOHx shows a higher activity for both processes due to more available active sites. It is anticipated that the herein developed, effective, room-temperature molecular synthesis of amorphous nickel pnictide nanomaterials can be applied to other functional transition-metal pnictides.
Collapse
Affiliation(s)
- Basundhara Dasgupta
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Jan Niklas Hausmann
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Rodrigo Beltrán-Suito
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Shweta Kalra
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Konstantin Laun
- Department of Chemistry: Physical Chemistry/Biophysical Chemistry, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Ingo Zebger
- Department of Chemistry: Physical Chemistry/Biophysical Chemistry, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Prashanth Wilfred Menezes
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
- Materials Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| |
Collapse
|
5
|
Han S, Cheng C, He M, Li R, Gao Y, Yu Y, Zhang B, Liu C. Preferential Adsorption of Ethylene Oxide on Fe and Chlorine on Ni Enabled Scalable Electrosynthesis of Ethylene Chlorohydrin. Angew Chem Int Ed Engl 2023; 62:e202216581. [PMID: 36734467 DOI: 10.1002/anie.202216581] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/11/2023] [Accepted: 02/03/2023] [Indexed: 02/04/2023]
Abstract
Industrial manufacturing of ethylene chlorohydrin (ECH) critically requires excess corrosive hydrochloric acid or hypochlorous acid with dealing with massive by-products and wastes. Here we report a green and efficient electrosynthesis of ECH from ethylene oxide (EO) with NaCl over a NiFe2 O4 nanosheet anode. Theoretical results suggest that EO and Cl preferentially adsorb on Fe and Ni sites, respectively, collaboratively promoting the ECH synthesis. A Cl radical-mediated ring-opening process is proposed and confirmed, and the key Cl and carbon radical species are identified by high-resolution mass spectrometry. This strategy can enable scalable electrosynthesis of 185.1 mmol of ECH in 1 h with 92.5 % yield at a 55 mA cm-2 current density. Furthermore, a series of other chloro- and bromoethanols with good to high yields and paired synthesis of ECH and 4-amino-3,6-dichloropyridine-2-carboxylicacid via respectively loading and unloading Cl are achieved, showing the promising potential of this strategy.
Collapse
Affiliation(s)
- Shuyan Han
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Chuanqi Cheng
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Meng He
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Rui Li
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Ying Gao
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Yifu Yu
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Bin Zhang
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Cuibo Liu
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
6
|
Wang T, Cao X, Jiao L. Progress in Hydrogen Production Coupled with Electrochemical Oxidation of Small Molecules. Angew Chem Int Ed Engl 2022; 61:e202213328. [PMID: 36200263 DOI: 10.1002/anie.202213328] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Indexed: 11/05/2022]
Abstract
The electrochemical oxidation of small molecules to generate value-added products has gained enormous interest in recent years because of the advantages of benign operation conditions, high conversion efficiency and selectivity, the absence of external oxidizing agents, and eco-friendliness. Coupling the electrochemical oxidation of small molecules to replace oxygen evolution reaction (OER) at the anode and the hydrogen evolution reaction (HER) at the cathode in an electrolyzer would simultaneously realize the generation of high-value chemicals or pollutant degradation and the highly efficient production of hydrogen. This Minireview presents an introduction on small-molecule choice and design strategies of electrocatalysts as well as recent breakthroughs achieved in the highly efficient production of hydrogen. Finally, challenges and future orientations are highlighted.
Collapse
Affiliation(s)
- Tongzhou Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Xuejie Cao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Lifang Jiao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
7
|
Mechanistic Insights for Dual-Species Evolution toward 5-Hydroxymethylfurfural Oxidation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Li H, Gao Y, Wu Y, Liu C, Cheng C, Chen F, Shi Y, Zhang B. σ-Alkynyl Adsorption Enables Electrocatalytic Semihydrogenation of Terminal Alkynes with Easy-Reducible/Passivated Groups over Amorphous PdS x Nanocapsules. J Am Chem Soc 2022; 144:19456-19465. [PMID: 36197038 DOI: 10.1021/jacs.2c07742] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Highly chemo- and regioselective semihydrogenation of alkynes is significant and challenging for the synthesis of functionalized alkenes. Here, a sequential self-template method is used to synthesize amorphous palladium sulfide nanocapsules (PdSx ANCs), which enables electrocatalytic semihydrogenation of terminal alkynes in H2O with excellent tolerance to easily reducible groups (e.g., C-I/Br/Cl, C═O) and the metal center deactivating skeletons (e.g., quinolyl, carboxyl, and nitrile). Mechanistic studies demonstrate that specific σ-alkynyl adsorption via terminal carbon and negligible alkene adsorption on isolated Pd2+ sites ensure successful synthesis of various alkenes with outstanding time-irrelevant selectivity in a wide potential range. The key hydrogen and carbon radical intermediates are validated by electron paramagnetic resonance and high-resolution mass spectrometry. Gram-scale synthesis of 4-bromostyrene and expedient preparation of deuterated alkene precursors and drugs with D2O show promising applications. Impressively, PdSx ANCs can be applied to the prevailing thermocatalytic semihydrogenation of functionalized alkyne using H2.
Collapse
Affiliation(s)
- Huizhi Li
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, Tianjin 300072, China
| | - Ying Gao
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, Tianjin 300072, China
| | - Yongmeng Wu
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, Tianjin 300072, China
| | - Cuibo Liu
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, Tianjin 300072, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Chuanqi Cheng
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Fanpeng Chen
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, Tianjin 300072, China
| | - Yanmei Shi
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, Tianjin 300072, China
| | - Bin Zhang
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, Tianjin 300072, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
9
|
Guo M, Lu X, Xiong J, Zhang R, Li X, Qiao Y, Ji N, Yu Z. Alloy-Driven Efficient Electrocatalytic Oxidation of Biomass-Derived 5-Hydroxymethylfurfural towards 2,5-Furandicarboxylic Acid: A Review. CHEMSUSCHEM 2022; 15:e202201074. [PMID: 35790081 DOI: 10.1002/cssc.202201074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/02/2022] [Indexed: 06/15/2023]
Abstract
In recent years, electrocatalysis was progressively developed to facilitate the selective oxidation of biomass-derived 5-hydroxymethylfurfural (HMF) towards the value-added chemical 2,5-furandicarboxylic acid (FDCA). Among reported electrocatalysts, alloy materials have demonstrated superior electrocatalytic properties due to their tunable electronic and geometric properties. However, a specific discussion of the potential impacts of alloy structures on the electrocatalytic HMF oxidation performance has not yet been presented in available Reviews. In this regard, this Review introduces the most recent perspectives on the alloy-driven electrocatalysis for HMF oxidation towards FDCA, including oxidation mechanism, alloy nanostructure modulation, and external conditions control. Particularly, modulation strategies for electronic and geometric structures of alloy electrocatalysts have been discussed. Challenges and suggestions are also provided for the rational design of alloy electrocatalysts. The viewpoints presented herein are anticipated to potentially contribute to a further development of alloy-driven electrocatalytic oxidation of HMF towards FDCA and to help boost a more sustainable and efficient biomass refining system.
Collapse
Affiliation(s)
- Mengyan Guo
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P.R. China
| | - Xuebin Lu
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P.R. China
- School of Science, Tibet University, Lhasa, 850000, P.R. China
| | - Jian Xiong
- School of Science, Tibet University, Lhasa, 850000, P.R. China
| | - Rui Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, P.R. China
| | - Xiaoyun Li
- School of Agriculture, Sun Yat-sen University Guangzhou, Guangdong, 510275, P.R. China
| | - Yina Qiao
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, P.R. China
| | - Na Ji
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P.R. China
| | - Zhihao Yu
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P.R. China
| |
Collapse
|
10
|
Bender MT, Choi K. Electrochemical Oxidation of HMF via Hydrogen Atom Transfer and Hydride Transfer on NiOOH and the Impact of NiOOH Composition. CHEMSUSCHEM 2022; 15:e202200675. [PMID: 35522224 PMCID: PMC9401862 DOI: 10.1002/cssc.202200675] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/05/2022] [Indexed: 06/14/2023]
Abstract
A great deal of attention has been directed toward studying the electrochemical oxidation of 5-hydroxymethylfurfural (HMF), a molecule that can be obtained from biomass-derived cellulose and hemicellulose, to 2,5-furandicarboxylic acid (FDCA), a molecule that can replace the petroleum-derived terephthalic acid in the production of widely used polymers such as polyethylene terephthalate. NiOOH is one of the best and most well studied electrocatalysts for achieving this transformation; however, the mechanism by which it does so is still poorly understood. This study quantitatively examines how two different dehydrogenation mechanisms on NiOOH impact the oxidation of HMF and its oxidation intermediates on the way to FDCA. The first mechanism is a well-established indirect oxidation mechanism featuring chemical hydrogen atom transfer to Ni3+ sites while the second mechanism is a newly discovered potential-dependent (PD) oxidation mechanism involving electrochemically induced hydride transfer to Ni4+ sites. The composition of NiOOH was also tuned to shift the potential of the Ni(OH)2 /NiOOH redox couple and to investigate how this affects the rates of indirect and PD oxidation as well as intermediate accumulation during a constant potential electrolysis. The new insights gained by this study will allow for the rational design of more efficient electrochemical dehydrogenation catalysts.
Collapse
Affiliation(s)
- Michael T. Bender
- Department of ChemistryUniversity of Wisconsin-MadisonMadisonWI-53706USA
| | - Kyoung‐Shin Choi
- Department of ChemistryUniversity of Wisconsin-MadisonMadisonWI-53706USA
| |
Collapse
|
11
|
Meng Y, Yang S, Li H. Electro- and Photocatalytic Oxidative Upgrading of Bio-based 5-Hydroxymethylfurfural. CHEMSUSCHEM 2022; 15:e202102581. [PMID: 35050546 DOI: 10.1002/cssc.202102581] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Conversion of biomass into biofuels and high value-added chemicals is a promising strategy to solve the increasingly deteriorating environmental problems caused by fossil energy consumption. The development of efficient technologies and methods is the premise and guarantee to realize the high-value conversion of biomass. 5-Hydroxymethylfurfural (HMF), as a versatile biomass platform compound, is generated via dehydration of hexoses (e. g., fructose and glucose) derived from cellulosic biomass. This Review gives an overview of the advances and challenges of electro- and photocatalytic oxidation of biomass-derived HMF to high-value chemicals such as 2,5-formylfuran (DFF) and 2,5-furandicarboxylic acid (FDCA). These strategies and methods for the preparation of high-value chemicals by electro- and photocatalytic oxidation of HMF, coupled with, for example, hydrogen evolution reaction, organic substrate reduction, CO2 reduction reaction, or N2 reduction reaction, were summarized and discussed. Moreover, the catalytic efficiency and mechanism of different types of catalysts were also introduced in these conversion systems.
Collapse
Affiliation(s)
- Ye Meng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, P. R. China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, P. R. China
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, P. R. China
| |
Collapse
|
12
|
Zhang D, Ren P, Liu W, Li Y, Salli S, Han F, Qiao W, Liu Y, Fan Y, Cui Y, Shen Y, Richards E, Wen X, Rummeli MH, Li Y, Besenbacher F, Niemantsverdriet H, Lim T, Su R. Photocatalytic Abstraction of Hydrogen Atoms from Water Using Hydroxylated Graphitic Carbon Nitride for Hydrogenative Coupling Reactions. Angew Chem Int Ed Engl 2022; 61:e202204256. [PMID: 35334135 PMCID: PMC9320934 DOI: 10.1002/anie.202204256] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Indexed: 11/20/2022]
Abstract
Employing pure water, the ultimate green source of hydrogen donor to initiate chemical reactions that involve a hydrogen atom transfer (HAT) step is fascinating but challenging due to its large H-O bond dissociation energy (BDEH-O =5.1 eV). Many approaches have been explored to stimulate water for hydrogenative reactions, but the efficiency and productivity still require significant enhancement. Here, we show that the surface hydroxylated graphitic carbon nitride (gCN-OH) only requires 2.25 eV to activate H-O bonds in water, enabling abstraction of hydrogen atoms via dehydrogenation of pure water into hydrogen peroxide under visible light irradiation. The gCN-OH presents a stable catalytic performance for hydrogenative N-N coupling, pinacol-type coupling and dehalogenative C-C coupling, all with high yield and efficiency, even under solar radiation, featuring extensive impacts in using renewable energy for a cleaner process in dye, electronic, and pharmaceutical industries.
Collapse
Affiliation(s)
- Dongsheng Zhang
- Soochow Institute for Energy and Materials InnovationS (SIEMIS)Soochow UniversitySuzhou215006China
- SynCat@Beijing, Synfuels China Technology Co. Ltd.Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Huairou DistrictBeijing101407China
| | - Pengju Ren
- SynCat@Beijing, Synfuels China Technology Co. Ltd.Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Huairou DistrictBeijing101407China
- State Key Laboratory of Coal ConversionInstitute of Coal ChemistryTaiyuan030001China
| | - Wuwen Liu
- Soochow Institute for Energy and Materials InnovationS (SIEMIS)Soochow UniversitySuzhou215006China
| | - Yaru Li
- SynCat@Beijing, Synfuels China Technology Co. Ltd.Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Huairou DistrictBeijing101407China
- State Key Laboratory of Coal ConversionInstitute of Coal ChemistryTaiyuan030001China
| | - Sofia Salli
- School of ChemistryCardiff UniversityPark PlaceCardiffCF10 3ATUK
| | - Feiyu Han
- Soochow Institute for Energy and Materials InnovationS (SIEMIS)Soochow UniversitySuzhou215006China
- SynCat@Beijing, Synfuels China Technology Co. Ltd.Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Huairou DistrictBeijing101407China
| | - Wei Qiao
- Soochow Institute for Energy and Materials InnovationS (SIEMIS)Soochow UniversitySuzhou215006China
| | - Yu Liu
- Soochow Institute for Energy and Materials InnovationS (SIEMIS)Soochow UniversitySuzhou215006China
| | - Yingzhu Fan
- Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO)No. 398 Ruoshui Road, Suzhou Industrial ParkSuzhou215123China
| | - Yi Cui
- Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO)No. 398 Ruoshui Road, Suzhou Industrial ParkSuzhou215123China
| | - Yanbin Shen
- Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO)No. 398 Ruoshui Road, Suzhou Industrial ParkSuzhou215123China
| | - Emma Richards
- School of ChemistryCardiff UniversityPark PlaceCardiffCF10 3ATUK
| | - Xiaodong Wen
- SynCat@Beijing, Synfuels China Technology Co. Ltd.Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Huairou DistrictBeijing101407China
- State Key Laboratory of Coal ConversionInstitute of Coal ChemistryTaiyuan030001China
| | - Mark H. Rummeli
- Soochow Institute for Energy and Materials InnovationS (SIEMIS)Soochow UniversitySuzhou215006China
| | - Yongwang Li
- SynCat@Beijing, Synfuels China Technology Co. Ltd.Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Huairou DistrictBeijing101407China
- State Key Laboratory of Coal ConversionInstitute of Coal ChemistryTaiyuan030001China
| | - Flemming Besenbacher
- Interdisciplinary Nanoscience Centre (iNANO)Aarhus UniversityGustav Wieds Vej 14DK-8000Aarhus CDenmark
| | - Hans Niemantsverdriet
- SynCat@Beijing, Synfuels China Technology Co. Ltd.Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Huairou DistrictBeijing101407China
- SynCat@DIFFERSyngaschem BV6336 HHEindhovenThe Netherlands
| | - Tingbin Lim
- Joint School of National University of Singapore and Tianjin UniversityInternational Campus of Tianjin UniversityBin-hai New CityFuzhou350207China
| | - Ren Su
- Soochow Institute for Energy and Materials InnovationS (SIEMIS)Soochow UniversitySuzhou215006China
- SynCat@Beijing, Synfuels China Technology Co. Ltd.Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Huairou DistrictBeijing101407China
| |
Collapse
|
13
|
Ge R, Wang Y, Li Z, Xu M, Xu SM, Zhou H, Ji K, Chen F, Zhou J, Duan H. Selective Electrooxidation of Biomass-Derived Alcohols to Aldehydes in a Neutral Medium: Promoted Water Dissociation over a Nickel-Oxide-Supported Ruthenium Single-Atom Catalyst. Angew Chem Int Ed Engl 2022; 61:e202200211. [PMID: 35170172 DOI: 10.1002/anie.202200211] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 12/11/2022]
Abstract
The biomass-derived alcohol oxidation reaction (BDAOR) holds great promise for sustainable production of chemicals. However, selective electrooxidation of alcohols to value-added aldehyde compounds is still challenging. Herein, we report the electrocatalytic BDAORs to selectively produce aldehydes using single-atom ruthenium on nickel oxide (Ru1 -NiO) as a catalyst in the neutral medium. For electrooxidation of 5-hydroxymethylfurfural (HMF), Ru1 -NiO exhibits a low potential of 1.283 V at 10 mA cm-2 , and an optimal 2,5-diformylfuran (DFF) selectivity of 90 %. Experimental studies reveal that the neutral electrolyte plays a critical role in achieving a high aldehyde selectivity, and the single-atom Ru boosts HMF oxidation in the neutral medium by promoting water dissociation to afford OH*. Furthermore, Ru1 -NiO can be extended to selective electrooxidation of a series of biomass-derived alcohols to corresponding aldehydes, which are conventionally difficult to obtain in the alkaline medium.
Collapse
Affiliation(s)
- Ruixiang Ge
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Ye Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zezhou Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100091, China
| | - Ming Xu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Si-Min Xu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hua Zhou
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Kaiyue Ji
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Fengen Chen
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jihan Zhou
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100091, China
| | - Haohong Duan
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
14
|
Zhang D, Ren P, Liu W, Li Y, Salli S, Han F, Qiao W, Liu Y, Fan Y, Cui Y, Shen Y, Richards E, Wen X, Rummeli MH, Li Y, Besenbacher F, Niemantsverdriet H, Lim T, Su R. Photocatalytic Abstraction of Hydrogen Atoms from Water Using Hydroxylated Graphitc Carbon Nitride for Hydrogenative Coupling Reactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dongsheng Zhang
- Soochow University Soochow Institute for Energy and Materials InnovationS (SIEMIS) CHINA
| | - Pengju Ren
- Synfuels China Technology Co Ltd R&D CHINA
| | - Wuwen Liu
- Soochow University Soochow Institute for Energy and Materials InnovationS (SIEMIS) CHINA
| | - Yaru Li
- Synfuels China Technology Co Ltd R&D Taiyuan CHINA
| | - Sofia Salli
- Cardiff University Catalysis institute CHINA
| | - Feiyu Han
- Soochow University College of Energy CHINA
| | - Wei Qiao
- Soochow University College of Energy CHINA
| | - Yu Liu
- Soochow University College of Energy CHINA
| | - Yingzhu Fan
- Chinese Academy of Sciences Suzhou Institute of Nano-tech and Nano-Bionics Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO) CHINA
| | - Yi Cui
- Suzhou Institute of Nano-tech and Nano-Bionics Chinese Academy of Sciences: Chinese Academy of Sciences Suzhou Institute of Nano-tech and Nano-Bionics Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO) CHINA
| | - Yanbin Shen
- Suzhou Institute of Nano-tech and Nano-Bionics Chinese Academy of Sciences: Chinese Academy of Sciences Suzhou Institute of Nano-tech and Nano-Bionics Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO) CHINA
| | | | - Xiaodong Wen
- Shanxi Institute of Coal Chemistry: Chinese Academy of Sciences Institute of Coal Chemistry CCI CHINA
| | | | - Yongwang Li
- Shanxi Institute of Coal Chemistry: Chinese Academy of Sciences Institute of Coal Chemistry CCI CHINA
| | | | | | - Tingbin Lim
- Joint School of National university of Singapore and Tianjing University International Campus of Tianjin University CHINA
| | - Ren Su
- Soochow University Dept. Energy Moye St. 688 215006 Suzhou CHINA
| |
Collapse
|
15
|
Ge R, Wang Y, Li Z, Xu M, Xu S, Zhou H, Ji K, Chen F, Zhou J, Duan H. Selective Electrooxidation of Biomass‐Derived Alcohols to Aldehydes in a Neutral Medium: Promoted Water Dissociation over a Nickel‐Oxide‐Supported Ruthenium Single‐Atom Catalyst. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ruixiang Ge
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Ye Wang
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Zezhou Li
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100091 China
| | - Ming Xu
- State Key Laboratory of Chemical Resource Engineering College of Chemistry Beijing University of Chemical Technology Beijing 100029 China
| | - Si‐Min Xu
- State Key Laboratory of Chemical Resource Engineering College of Chemistry Beijing University of Chemical Technology Beijing 100029 China
| | - Hua Zhou
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Kaiyue Ji
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Fengen Chen
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Jihan Zhou
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100091 China
| | - Haohong Duan
- Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
16
|
Valiente A, Martínez‐Pardo P, Kaur G, Johansson MJ, Martín‐Matute B. Electrochemical Proton Reduction over Nickel Foam for Z-Stereoselective Semihydrogenation/deuteration of Functionalized Alkynes. CHEMSUSCHEM 2022; 15:e202102221. [PMID: 34738723 PMCID: PMC9300003 DOI: 10.1002/cssc.202102221] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Selective reduction strategies based on abundant-metal catalysts are very important in the production of chemicals. In this paper, a method for the electrochemical semihydrogenation and semideuteration of alkynes to form Z-alkenes was developed, using a simple nickel foam as catalyst and H3 O+ or D3 O+ as sources of hydrogen or deuterium. Good yields and excellent stereoselectivities (Z/E up to 20 : 1) were obtained under very mild reaction conditions. The reaction proceeded with terminal and nonterminal alkynes, and also with alkynes containing easily reducible functional groups, such as carbonyl groups, as well as aryl chlorides, bromides, and even iodides. The nickel-foam electrocatalyst could be recycled up to 14 times without any change in its catalytic properties.
Collapse
Affiliation(s)
- Alejandro Valiente
- Department of Organic ChemistryStockholm University The Arrhenius Laboratory 16C106 91StockholmSweden
| | - Pablo Martínez‐Pardo
- Department of Organic ChemistryStockholm University The Arrhenius Laboratory 16C106 91StockholmSweden
| | - Gurpreet Kaur
- Department of Organic ChemistryStockholm University The Arrhenius Laboratory 16C106 91StockholmSweden
| | - Magnus J. Johansson
- Medicinal Chemistry, Research and Early Development; Cardiovascular, Renal and Metabolism (CVRM)Biopharmaceuticals R&D AstraZenecaPepparedsleden 143150Mölndal, GothenburgSweden
| | - Belén Martín‐Matute
- Department of Organic ChemistryStockholm University The Arrhenius Laboratory 16C106 91StockholmSweden
| |
Collapse
|
17
|
Wang C, Bongard H, Yu M, Schüth F. Highly Ordered Mesoporous Co 3 O 4 Electrocatalyst for Efficient, Selective, and Stable Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. CHEMSUSCHEM 2021; 14:5199-5206. [PMID: 33411400 PMCID: PMC9290726 DOI: 10.1002/cssc.202002762] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Electrochemical oxidation of biomass substrates to valuable bio-chemicals is highly attractive. However, the design of efficient, selective, stable, and inexpensive electrocatalysts remains challenging. Here it is reported how a 3D highly ordered mesoporous Co3 O4 /nickel foam (om-Co3 O4 /NF) electrode fulfils those criteria in the electrochemical oxidation of 5-hydroxymethylfurfural (HMF) to value-added 2,5-furandicarboxylic acid (FDCA). Full conversion of HMF and an FDCA yield of >99.8 % are achieved with a faradaic efficiency close to 100 % at a potential of 1.457 V vs. reversible hydrogen electrode. Such activity and selectivity to FDCA are attributed to the fast electron transfer, high electrochemical surface area, and reduced charge transfer resistance. More impressively, remarkable catalyst stability under long-term testing is obtained with 17 catalytic cycles. This work highlights the rational design of metal oxides with ordered meso-structures for electrochemical biomass conversion.
Collapse
Affiliation(s)
- Changlong Wang
- Max-Planck-Institut für Kohlenforschung45470Mülheim an der RuhrGermany
| | | | - Mingquan Yu
- Max-Planck-Institut für Kohlenforschung45470Mülheim an der RuhrGermany
| | - Ferdi Schüth
- Max-Planck-Institut für Kohlenforschung45470Mülheim an der RuhrGermany
| |
Collapse
|
18
|
Zhou B, Li Y, Zou Y, Chen W, Zhou W, Song M, Wu Y, Lu Y, Liu J, Wang Y, Wang S. Platinum Modulates Redox Properties and 5-Hydroxymethylfurfural Adsorption Kinetics of Ni(OH) 2 for Biomass Upgrading. Angew Chem Int Ed Engl 2021; 60:22908-22914. [PMID: 34405508 DOI: 10.1002/anie.202109211] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/09/2021] [Indexed: 11/05/2022]
Abstract
Nickel hydroxide (Ni(OH)2 ) is a promising electrocatalyst for the 5-hydroxymethylfurfural oxidation reaction (HMFOR) and the dehydronated intermediates Ni(OH)O species are proved to be active sites for HMFOR. In this study, Ni(OH)2 is modified by platinum to adjust the electronic structure and the current density of HMFOR improves 8.2 times at the Pt/Ni(OH)2 electrode compared with that on Ni(OH)2 electrode. Operando methods reveal that the introduction of Pt optimized the redox property of Ni(OH)2 and accelerate the formation of Ni(OH)O during the catalytic process. Theoretical studies demonstrate that the enhanced Ni(OH)O formation kinetics originates from the reduced dehydrogenation energy of Ni(OH)2 . The product analysis and transition state simulation prove that the Pt also reduces adsorption energy of HMF with optimized adsorption behavior as Pt can act as the adsorption site of HMF. Overall, this work here provides a strategy to design an efficient and universal nickel-based catalyst for HMF electro-oxidation, which can also be extended to other Ni-based catalysts such as Ni(HCO3 )2 and NiO.
Collapse
Affiliation(s)
- Bo Zhou
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yingying Li
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yuqin Zou
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Wei Chen
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Wang Zhou
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Minglei Song
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yujie Wu
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yuxuan Lu
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Jilei Liu
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yanyong Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Shuangyin Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
19
|
Zhou B, Li Y, Zou Y, Chen W, Zhou W, Song M, Wu Y, Lu Y, Liu J, Wang Y, Wang S. Platinum Modulates Redox Properties and 5‐Hydroxymethylfurfural Adsorption Kinetics of Ni(OH)
2
for Biomass Upgrading. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bo Zhou
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics Provincial Hunan Key Laboratory for Graphene Materials and Devices College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Yingying Li
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics Provincial Hunan Key Laboratory for Graphene Materials and Devices College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Yuqin Zou
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics Provincial Hunan Key Laboratory for Graphene Materials and Devices College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Wei Chen
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics Provincial Hunan Key Laboratory for Graphene Materials and Devices College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Wang Zhou
- College of Materials Science and Engineering Hunan University Changsha 410082 P. R. China
| | - Minglei Song
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics Provincial Hunan Key Laboratory for Graphene Materials and Devices College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Yujie Wu
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics Provincial Hunan Key Laboratory for Graphene Materials and Devices College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Yuxuan Lu
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics Provincial Hunan Key Laboratory for Graphene Materials and Devices College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Jilei Liu
- College of Materials Science and Engineering Hunan University Changsha 410082 P. R. China
| | - Yanyong Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics Provincial Hunan Key Laboratory for Graphene Materials and Devices College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Shuangyin Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics Provincial Hunan Key Laboratory for Graphene Materials and Devices College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| |
Collapse
|
20
|
Chong X, Liu C, Wang C, Yang R, Zhang B. Integrating Hydrogen Production and Transfer Hydrogenation with Selenite Promoted Electrooxidation of α‐Nitrotoluenes to
E
‐Nitroethenes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiaodan Chong
- Institute of Molecular Plus Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Cuibo Liu
- Institute of Molecular Plus Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Changhong Wang
- Institute of Molecular Plus Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Rong Yang
- Institute of Molecular Plus Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Bin Zhang
- Institute of Molecular Plus Department of Chemistry School of Science Tianjin University Tianjin 300072 China
- Frontiers Science Center for Synthetic Biology (Ministry of Education) Collaborative Innovation Center of Chemical Science and Engineering Tianjin University Tianjin 300072 China
| |
Collapse
|
21
|
Chong X, Liu C, Wang C, Yang R, Zhang B. Integrating Hydrogen Production and Transfer Hydrogenation with Selenite Promoted Electrooxidation of α-Nitrotoluenes to E-Nitroethenes. Angew Chem Int Ed Engl 2021; 60:22010-22016. [PMID: 34318964 DOI: 10.1002/anie.202108666] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/19/2021] [Indexed: 11/12/2022]
Abstract
Developing an electrochemical carbon-added reaction with accelerated kinetics to replace the low-value and sluggish oxygen evolution reaction (OER) is markedly significant to pure hydrogen production. Regulating the critical steps to precisely design electrode materials to selectively synthesize targeted compounds is highly desirable. Here, inspired by the surfaced adsorbed SeOx 2- promoting OER, NiSe is demonstrated to be an efficient anode enabling α-nitrotoluene electrooxidation to E-nitroethene with up to 99 % E selectivity, 89 % Faradaic efficiency, and the reaction rate of 0.25 mmol cm-2 h-1 via inhibiting side reactions for energy-saving hydrogen generation. The high performance can be associated with its in situ formed NiOOH surface layer and absorbed SeOx 2- via Se leaching-oxidation during electrooxidation, and the preferential adsorption of two -NO2 groups of intermediate on NiOOH. A self-coupling of α-carbon radicals and subsequent elimination of a nitrite molecule pathway is proposed. Wide substrate scope, scale-up synthesis of E-nitroethene, and paired productions of E-nitroethene and hydrogen or N-protected aminoarenes over a bifunctional NiSe electrode highlight the promising potential. Gold also displays a similar promoting effect for α-nitrotoluene transformation like SeOx 2- , rationalizing the strategy of designing materials to suppress side reactions.
Collapse
Affiliation(s)
- Xiaodan Chong
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Cuibo Liu
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Changhong Wang
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Rong Yang
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Bin Zhang
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China.,Frontiers Science Center for Synthetic Biology (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
22
|
Deng X, Xu G, Zhang Y, Wang L, Zhang J, Li J, Fu X, Luo J. Understanding the Roles of Electrogenerated Co
3+
and Co
4+
in Selectivity‐Tuned 5‐Hydroxymethylfurfural Oxidation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108955] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaohui Deng
- Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen China
| | - Ge‐Yang Xu
- College of Materials State Key Laboratory of Physical Chemistry of Solid Surfaces iChEM College of Chemistry and Chemical Engineering Fujian Key Laboratory of Advanced Materials College of Energy Xiamen University Xiamen China
| | - Yue‐Jiao Zhang
- College of Materials State Key Laboratory of Physical Chemistry of Solid Surfaces iChEM College of Chemistry and Chemical Engineering Fujian Key Laboratory of Advanced Materials College of Energy Xiamen University Xiamen China
| | - Lei Wang
- Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen China
| | - Jiujun Zhang
- Institute for Sustainable Energy/College of Sciences Shanghai University Shanghai China
| | - Jian‐Feng Li
- College of Materials State Key Laboratory of Physical Chemistry of Solid Surfaces iChEM College of Chemistry and Chemical Engineering Fujian Key Laboratory of Advanced Materials College of Energy Xiamen University Xiamen China
| | - Xian‐Zhu Fu
- Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen China
| | - Jing‐Li Luo
- Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen China
| |
Collapse
|
23
|
Deng X, Xu GY, Zhang YJ, Wang L, Zhang J, Li JF, Fu XZ, Luo JL. Understanding the Roles of Electrogenerated Co 3+ and Co 4+ in Selectivity-Tuned 5-Hydroxymethylfurfural Oxidation. Angew Chem Int Ed Engl 2021; 60:20535-20542. [PMID: 34288301 DOI: 10.1002/anie.202108955] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Indexed: 11/06/2022]
Abstract
The Co-based electrocatalyst is among the most promising candidates for electrochemical oxidation of 5-hydroxymethylfurfural (HMF). However, the intrinsic active sites and detailed mechanism of this catalyst remains unclear. We combine experimental evidence and a theoretical study to show that electrogenerated Co3+ and Co4+ species act as chemical oxidants but with distinct roles in selective HMF oxidation. It is found that Co3+ is only capable of oxidizing formyl group to produce carboxylate while Co4+ is required for the initial oxidation of hydroxyl group with significantly faster kinetics. As a result, the product distribution shows explicit dependence on the Co oxidation states and selective production of 5-hydroxymethyl-2-furancarboxylic acid (HMFCA) and 2,5-furandicarboxylic acid (FDCA) are achieved by tuning the applied potential. This work offers essential mechanistic insight on Co-catalyzed organic oxidation reactions and might guide the design of more efficient electrocatalysts.
Collapse
Affiliation(s)
- Xiaohui Deng
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Ge-Yang Xu
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University, Xiamen, China
| | - Yue-Jiao Zhang
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University, Xiamen, China
| | - Lei Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Jiujun Zhang
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, China
| | - Jian-Feng Li
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University, Xiamen, China
| | - Xian-Zhu Fu
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Jing-Li Luo
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
24
|
Liu H, Lee T, Chen Y, Cochran EW, Li W. Paired and Tandem Electrochemical Conversion of 5‐(Hydroxymethyl)furfural Using Membrane‐Electrode Assembly‐Based Electrolytic Systems. ChemElectroChem 2021. [DOI: 10.1002/celc.202100662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hengzhou Liu
- Department of Chemical and Biological Engineering Iowa State University 618 Bissell Road Ames IA 50011 USA
| | - Ting‐Han Lee
- Department of Chemical and Biological Engineering Iowa State University 618 Bissell Road Ames IA 50011 USA
| | - Yifu Chen
- Department of Chemical and Biological Engineering Iowa State University 618 Bissell Road Ames IA 50011 USA
| | - Eric W. Cochran
- Department of Chemical and Biological Engineering Iowa State University 618 Bissell Road Ames IA 50011 USA
| | - Wenzhen Li
- Department of Chemical and Biological Engineering Iowa State University 618 Bissell Road Ames IA 50011 USA
| |
Collapse
|
25
|
Zhang J, Gong W, Yin H, Wang D, Zhang Y, Zhang H, Wang G, Zhao H. In Situ Growth of Ultrathin Ni(OH) 2 Nanosheets as Catalyst for Electrocatalytic Oxidation Reactions. CHEMSUSCHEM 2021; 14:2935-2942. [PMID: 34013575 DOI: 10.1002/cssc.202100811] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/08/2021] [Indexed: 06/12/2023]
Abstract
Development of electrocatalysts that are capable of efficiently oxidizing biomass-derived 5-hydroxymethylfurfural (HMF) into 2,5-furandicarboxylic acid (FDCA) is critically important for production of degradable plastics via non-fossil routes. In this study, a facile and scalable immersion synthetic approach has been developed to grow ultrathin nickel hydroxide nanosheets in situ on commercial nickel foam (Ni(OH)2 /NF) as an anode for the electrocatalytic oxidation of HMF to FDCA with complete HMF conversion, 100 % FDCA yield, and >99 % faradaic efficiency at 1.39 V (vs. RHE) within 90 min. Mechanistic studies reveal that the initial oxidation of HMF takes place at the carbonyl group and FDCA is generated through two further oxidation steps. Impressively, the synthesized Ni(OH)2 /NF can also be used to electrocatalytically oxidize other alcohol/aldehyde-containing compounds to the targeted products in alkaline medium with 100 % yield and >94 % faradaic efficiency under a low oxidation potential of 1.39 V (vs. RHE) within short reaction times.
Collapse
Affiliation(s)
- Jifang Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Centre for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Wanbing Gong
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Centre for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Huajie Yin
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Centre for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | - Dongdong Wang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Centre for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yunxia Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Centre for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Haimin Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Centre for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Guozhong Wang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Centre for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Huijun Zhao
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Centre for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| |
Collapse
|
26
|
Lu X, Wu K, Zhang B, Chen J, Li F, Su B, Yan P, Chen J, Qi W. Highly Efficient Electro‐reforming of 5‐Hydroxymethylfurfural on Vertically Oriented Nickel Nanosheet/Carbon Hybrid Catalysts: Structure–Function Relationships. Angew Chem Int Ed Engl 2021; 60:14528-14535. [DOI: 10.1002/anie.202102359] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/17/2021] [Indexed: 12/30/2022]
Affiliation(s)
- Xingyu Lu
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 China
| | - Kuang‐Hsu Wu
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 China
- School of Chemical Engineering The University of New South Wales Sydney, Kensington NSW 2052 Australia
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 China
| | - Junnan Chen
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 China
| | - Fan Li
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 China
| | - Bing‐Jian Su
- National Synchrotron Radiation Research Center Hsinchu (Taiwan), R.O.C. 30076 China
| | - Pengqiang Yan
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 China
| | - Jin‐Ming Chen
- National Synchrotron Radiation Research Center Hsinchu (Taiwan), R.O.C. 30076 China
| | - Wei Qi
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 China
| |
Collapse
|
27
|
Lu X, Wu K, Zhang B, Chen J, Li F, Su B, Yan P, Chen J, Qi W. Highly Efficient Electro‐reforming of 5‐Hydroxymethylfurfural on Vertically Oriented Nickel Nanosheet/Carbon Hybrid Catalysts: Structure–Function Relationships. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xingyu Lu
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 China
| | - Kuang‐Hsu Wu
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 China
- School of Chemical Engineering The University of New South Wales Sydney, Kensington NSW 2052 Australia
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 China
| | - Junnan Chen
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 China
| | - Fan Li
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 China
| | - Bing‐Jian Su
- National Synchrotron Radiation Research Center Hsinchu (Taiwan), R.O.C. 30076 China
| | - Pengqiang Yan
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 China
| | - Jin‐Ming Chen
- National Synchrotron Radiation Research Center Hsinchu (Taiwan), R.O.C. 30076 China
| | - Wei Qi
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 China
| |
Collapse
|
28
|
Zhou H, Li Z, Xu S, Lu L, Xu M, Ji K, Ge R, Yan Y, Ma L, Kong X, Zheng L, Duan H. Selectively Upgrading Lignin Derivatives to Carboxylates through Electrochemical Oxidative C(OH)−C Bond Cleavage by a Mn‐Doped Cobalt Oxyhydroxide Catalyst. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hua Zhou
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Zhenhua Li
- State Key Laboratory of Chemical Resource Engineering College of Chemistry Beijing University of Chemical Technology Beijing 100029 China
| | - Si‐Min Xu
- State Key Laboratory of Chemical Resource Engineering College of Chemistry Beijing University of Chemical Technology Beijing 100029 China
| | - Lilin Lu
- School of Chemistry and Chemical Engineering Wuhan University of Science and Technology Wuhan 430081 China
| | - Ming Xu
- State Key Laboratory of Chemical Resource Engineering College of Chemistry Beijing University of Chemical Technology Beijing 100029 China
| | - Kaiyue Ji
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Ruixiang Ge
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yifan Yan
- State Key Laboratory of Chemical Resource Engineering College of Chemistry Beijing University of Chemical Technology Beijing 100029 China
| | - Lina Ma
- State Key Laboratory of Chemical Resource Engineering College of Chemistry Beijing University of Chemical Technology Beijing 100029 China
| | - Xianggui Kong
- State Key Laboratory of Chemical Resource Engineering College of Chemistry Beijing University of Chemical Technology Beijing 100029 China
| | - Lirong Zheng
- Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Haohong Duan
- Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
29
|
Zhou H, Li Z, Xu S, Lu L, Xu M, Ji K, Ge R, Yan Y, Ma L, Kong X, Zheng L, Duan H. Selectively Upgrading Lignin Derivatives to Carboxylates through Electrochemical Oxidative C(OH)−C Bond Cleavage by a Mn‐Doped Cobalt Oxyhydroxide Catalyst. Angew Chem Int Ed Engl 2021; 60:8976-8982. [DOI: 10.1002/anie.202015431] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/18/2021] [Indexed: 12/18/2022]
Affiliation(s)
- Hua Zhou
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Zhenhua Li
- State Key Laboratory of Chemical Resource Engineering College of Chemistry Beijing University of Chemical Technology Beijing 100029 China
| | - Si‐Min Xu
- State Key Laboratory of Chemical Resource Engineering College of Chemistry Beijing University of Chemical Technology Beijing 100029 China
| | - Lilin Lu
- School of Chemistry and Chemical Engineering Wuhan University of Science and Technology Wuhan 430081 China
| | - Ming Xu
- State Key Laboratory of Chemical Resource Engineering College of Chemistry Beijing University of Chemical Technology Beijing 100029 China
| | - Kaiyue Ji
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Ruixiang Ge
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yifan Yan
- State Key Laboratory of Chemical Resource Engineering College of Chemistry Beijing University of Chemical Technology Beijing 100029 China
| | - Lina Ma
- State Key Laboratory of Chemical Resource Engineering College of Chemistry Beijing University of Chemical Technology Beijing 100029 China
| | - Xianggui Kong
- State Key Laboratory of Chemical Resource Engineering College of Chemistry Beijing University of Chemical Technology Beijing 100029 China
| | - Lirong Zheng
- Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Haohong Duan
- Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
30
|
Wu Y, Liu C, Wang C, Lu S, Zhang B. Selective Transfer Semihydrogenation of Alkynes with H
2
O (D
2
O) as the H (D) Source over a Pd‐P Cathode. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009757] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Yongmeng Wu
- Institute of Molecular Plus Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Cuibo Liu
- Institute of Molecular Plus Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Changhong Wang
- Institute of Molecular Plus Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Siyu Lu
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450000 China
| | - Bin Zhang
- Institute of Molecular Plus Department of Chemistry School of Science Tianjin University Tianjin 300072 China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of, Education) Tianjin University Tianjin 300072 China
| |
Collapse
|
31
|
Wu Y, Liu C, Wang C, Lu S, Zhang B. Selective Transfer Semihydrogenation of Alkynes with H
2
O (D
2
O) as the H (D) Source over a Pd‐P Cathode. Angew Chem Int Ed Engl 2020; 59:21170-21175. [DOI: 10.1002/anie.202009757] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Yongmeng Wu
- Institute of Molecular Plus Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Cuibo Liu
- Institute of Molecular Plus Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Changhong Wang
- Institute of Molecular Plus Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Siyu Lu
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450000 China
| | - Bin Zhang
- Institute of Molecular Plus Department of Chemistry School of Science Tianjin University Tianjin 300072 China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of, Education) Tianjin University Tianjin 300072 China
| |
Collapse
|
32
|
Liu C, Han S, Li M, Chong X, Zhang B. Electrocatalytic Deuteration of Halides with D 2 O as the Deuterium Source over a Copper Nanowire Arrays Cathode. Angew Chem Int Ed Engl 2020; 59:18527-18531. [PMID: 32662240 DOI: 10.1002/anie.202009155] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Indexed: 11/11/2022]
Abstract
Precise deuterium incorporation with controllable deuterated sites is extremely desirable. Here, a facile and efficient electrocatalytic deuterodehalogenation of halides using D2 O as the deuteration reagent and copper nanowire arrays (Cu NWAs) electrochemically formed in situ as the cathode was demonstrated. A cross-coupling of carbon and deuterium free radicals might be involved for this ipso-selective deuteration. This method exhibited excellent chemoselectivity and high compatibility with the easily reducible functional groups (C=C, C≡C, C=O, C=N, C≡N). The C-H to C-D transformations were achieved with high yields and deuterium ratios through a one-pot halogenation-deuterodehalogenation process. Efficient deuteration of less-active bromide substrates, specific deuterium incorporation into top-selling pharmaceuticals, and oxidant-free paired anodic synthesis of high-value chemicals with low energy input highlighted the potential practicality.
Collapse
Affiliation(s)
- Cuibo Liu
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Shuyan Han
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Mengyang Li
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Xiaodan Chong
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Bin Zhang
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China.,Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology, (Ministry of Education), Tianjin University, Tianjin, 300072, China
| |
Collapse
|
33
|
Electrocatalytic Deuteration of Halides with D
2
O as the Deuterium Source over a Copper Nanowire Arrays Cathode. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009155] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|