1
|
Xu X, Qian Q, Shi Y, Huang W, Yuan C, Ma LQ, Harris WG, Dai J, Hou D, Cao X. Cola beverage reduces risk of lead poisoning from accidental ingestion of contaminated soil particles in rat and swine models. Nat Commun 2025; 16:755. [PMID: 39824860 PMCID: PMC11742081 DOI: 10.1038/s41467-025-56138-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/08/2025] [Indexed: 01/20/2025] Open
Abstract
Accidental ingestion of lead (Pb)-contaminated soils represents a major route of Pb exposure for both adults and children, and the development of accessible and cost-effective solutions to reduce Pb poisoning is urgently required. Here, we present an effective and straightforward technique, involving the consumption of cola beverages, for the purpose of lowering blood Pb levels following the ingestion of contaminated soils in animal models. This method facilitated the direct passage of Pb in contaminated soil through the digestive system, enhancing its elimination without absorption into systemic circulation. Our results demonstrated that cola effectively reduced Pb bioaccessibility in 22 contaminated soils by 32.6%-98.8%. In male rats and swine exposed to Pb-contaminated soils, cola treatment decreased blood Pb concentrations by 32.9%-96.0% and 31.5%-81.5%, respectively. This cola-induced reduction in Pb bioaccessibility and bioavailability was attributed to the rich phosphoric acid content in cola, which promoted the formation of insoluble Pb phosphate precipitate (pyromorphite [Pb5(PO4)3Cl]) during the gastric phase. The precipitate was directly excreted in feces, resulting in lower Pb absorption in the blood. These findings suggest that the consumption of cola beverages may be a practical strategy to mitigate the risk of Pb poisoning following the accidental ingestion of contaminated soils. However, the applicability of this approach in humans remains uncertain in the absence of population-based studies. While these findings underscore the potential for cola beverages to reduce Pb absorption following soil ingestion in animal models, further research is necessary to evaluate its safety, efficacy, and possible risks in humans before any such protocols are initiated.
Collapse
Affiliation(s)
- Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Quan Qian
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Shi
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wenfeng Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chengpeng Yuan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lena Q Ma
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Willie G Harris
- Soil and Water Sciences Department, University of Florida, Gainesville, USA
| | - Jiayin Dai
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
| |
Collapse
|
2
|
Nong Q, Chen B, Huang Y, Li Y, Wang Y, Liu L, He B, Luan T, Hu L, Jiang G. Identification of lead-binding proteins as carriers and potential molecular targets associated with systolic blood pressure. CHEMOSPHERE 2023; 341:140138. [PMID: 37696478 DOI: 10.1016/j.chemosphere.2023.140138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Lead (Pb) exposure is well recognized as a significant environmental factor associated with the high incidence of cardiovascular diseases. However, the carriers and molecular targets of Pb in human blood remain to be understood, especially for a real Pb exposure scenario. In this study, a total of 350 blood samples were collected from the smelting workers and systematically analyzed using metallomics and metalloproteomics approaches. The results showed that the majority of Pb (∼99.4%) could be presented in the blood cells. Pb in the cytoplasm of blood cells accounted for approximately 83.1% of the total blood Pb, with nearly half of Pb being bound to proteins. Pb-binding proteins in the blood of workers were identified as hemoglobin, catalase, haptoglobin, δ-aminolevulinic acid dehydratase, and peroxiredoxin-2. Multiple linear regression analysis demonstrated that higher levels of Pb bound to proteins (Mix-bound Pb and Protein-bound Pb) were positively associated with higher systolic blood pressure (p < 0.05). However, the association between blood lead level, Pb levels in the blood cells and systolic blood pressure was not observed (p > 0.05). This study suggested that Pb bound to proteins could be a suitable biomarker for indicating the potential risk of occupational hypertension.
Collapse
Affiliation(s)
- Qiying Nong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; State Key Lab of Bioresource and Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510300, China
| | - Baowei Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China
| | - Yongshun Huang
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510300, China
| | - Yiling Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yuanyuan Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Lihong Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Bin He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Tiangang Luan
- State Key Lab of Bioresource and Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510275, China; Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
3
|
Xie S, Pan C, Yao Y, Yu X, Xu Z, Yuan W, Zhang Y, Guo N, Li X, Mao X, Xiao S, Li J, Guo Y. Ultra-high-efficiency capture of lead ions over acetylenic bond-rich graphdiyne adsorbent in aqueous solution. Proc Natl Acad Sci U S A 2023; 120:e2221002120. [PMID: 37036993 PMCID: PMC10120024 DOI: 10.1073/pnas.2221002120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/01/2023] [Indexed: 04/12/2023] Open
Abstract
A satisfactory material with high adsorption capacity is urgently needed to solve the serious problem of environment and human health caused by lead pollution. Herein, hydrogen-substituted graphdiyne (HsGDY) was successfully fabricated and employed to remove lead ions from sewage and lead-containing blood. The as-prepared HsGDY exhibits the highest adsorption capacity of lead among the reported materials with a maximum adsorption capacity of 2,390 mg/g, i.e., ~five times larger than that of graphdiyne (GDY). The distinguished hexagonal hole and stack mode of HsGDY allows the adsorption of more lead via its inner side adsorption mode in one single unit space. In addition, the Pb 6s and H 1s hybridization promotes the strong bonding of lead atom adsorbed at the acetylenic bond of HsGDY, contributing to the high adsorption capacity. HsGDY can be easily regenerated by acid treatment and showed excellent regeneration ability and reliability after six adsorption-regeneration cycles. Langmuir isotherm model, pseudo second order, and density functional theory (DFT) demonstrated that the lead adsorption process in HsGDY is monolayer chemisorption. Furthermore, the HsGDY-based portable filter can handle 1,000 μg/L lead-containing aqueous solution up to 1,000 mL, which is nearly 6.67 times that of commercial activated carbon particles. And, the HsGDY shows good biocompatibility and excellent removal efficiency to 100 μg/L blood lead, which is 1.7 times higher than that of GDY. These findings suggest that HsGDY could be a promising adsorbent for practical lead and other heavy metal removal.
Collapse
Affiliation(s)
- Shuanglei Xie
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan430079, China
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan430074, China
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan430074, China
| | - Chuanqi Pan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan430079, China
| | - Yuan Yao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan430079, China
| | - Xianglin Yu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan430074, China
| | - Ze Xu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan430079, China
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan430074, China
| | - Weidong Yuan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan430079, China
| | - Yi Zhang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan430074, China
| | - Ning Guo
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan430074, China
| | - Xue Li
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing100081, China
| | - Xuefei Mao
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing100081, China
| | - Shengqiang Xiao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan430070, China
| | - Junbo Li
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan430074, China
| | - Yanbing Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan430079, China
- Wuhan Institute of Photochemistry and Technology, Wuhan, Hubei430082, China
| |
Collapse
|
4
|
Li M, Tang S, Chu M, Xue Y, Mao J, Guo W, Mao C, Zhou M. Magnetic Nanosorbents for Adsorption of Blood Mercury. ChemistrySelect 2022. [DOI: 10.1002/slct.202201779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Minghai Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University No.1, Wenyuan Road Nanjing 210023 China
| | - Shuwan Tang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University No.1, Wenyuan Road Nanjing 210023 China
| | - Meilin Chu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University No.1, Wenyuan Road Nanjing 210023 China
| | - Yunxin Xue
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University No.1, Wenyuan Road Nanjing 210023 China
| | - Jiazhou Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University No.1, Wenyuan Road Nanjing 210023 China
| | - Wenyan Guo
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University No.1, Wenyuan Road Nanjing 210023 China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University No.1, Wenyuan Road Nanjing 210023 China
| | - Min Zhou
- Department of Vascular Surgery Nanjing Drum Tower Hospital The Affiliated Hospital of Nanjing University Medical School No.22, Hankou Road Nanjing 210008 China
| |
Collapse
|