1
|
Abstract
The Pd-catalyzed carbon-carbon bond formation pioneered by Heck in 1969 has dominated medicinal chemistry development for the ensuing fifty years. As the demand for more complex three-dimensional active pharmaceuticals continues to increase, preparative enzyme-mediated assembly, by virtue of its exquisite selectivity and sustainable nature, is poised to provide a practical and affordable alternative for accessing such compounds. In this minireview, we summarize recent state-of-the-art developments in practical enzyme-mediated assembly of carbocycles. When appropriate, background information on the enzymatic transformation is provided and challenges and/or limitations are also highlighted.
Collapse
Affiliation(s)
- Weijin Wang
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Douglass F Taber
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Hans Renata
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
2
|
Henche S, Nestl BM, Hauer B. Enzymatic Friedel‐Crafts Alkylation Using Squalene‐Hopene Cyclases. ChemCatChem 2021. [DOI: 10.1002/cctc.202100452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Sabrina Henche
- Institute of Biochemistry and Technical Biochemistry Department of Technical Biochemistry Universitaet Stuttgart Allmandring 31 70569 Stuttgart Germany
| | | | - Bernhard Hauer
- Institute of Biochemistry and Technical Biochemistry Department of Technical Biochemistry Universitaet Stuttgart Allmandring 31 70569 Stuttgart Germany
| |
Collapse
|
3
|
Xu M, Hou M, He H, Gao S. Asymmetric Total Synthesis of Aglacins A, B, and E. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mengmeng Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical, Processes School of Chemistry and Molecular Engineering East China Normal University China
| | - Min Hou
- Shanghai Key Laboratory of Green Chemistry and Chemical, Processes School of Chemistry and Molecular Engineering East China Normal University China
| | - Haibing He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development East China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Shuanhu Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical, Processes School of Chemistry and Molecular Engineering East China Normal University China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development East China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| |
Collapse
|
4
|
Xu M, Hou M, He H, Gao S. Asymmetric Total Synthesis of Aglacins A, B, and E. Angew Chem Int Ed Engl 2021; 60:16655-16660. [PMID: 34008314 DOI: 10.1002/anie.202105395] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Indexed: 12/16/2022]
Abstract
An asymmetric photoenolization/Diels-Alder (PEDA) reaction between electron-rich 2-methylbenzaldehydes and unsaturated γ-lactones was developed to directly construct the basic tricyclic core of aryltetralin lactone lignans. This methodology enabled the first asymmetric total synthesis of aglacins A, B, and E and revision of the absolute configuration of these natural lignans. The strategy was also used to prepare the naturally occurring aryldihydronaphthalene-type lignans (-)-7,8-dihydroisojusticidin B and (+)-linoxepin in four and six steps, as well as 27 natural-product-like molecules containing a C8' quaternary center. We believe that the synthetic aglacins and small-molecule library provide new opportunities to carry out the SAR studies of the podophyllotoxin family of natural products.
Collapse
Affiliation(s)
- Mengmeng Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical, Processes, School of Chemistry and Molecular Engineering, East China Normal University, China
| | - Min Hou
- Shanghai Key Laboratory of Green Chemistry and Chemical, Processes, School of Chemistry and Molecular Engineering, East China Normal University, China
| | - Haibing He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Shuanhu Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical, Processes, School of Chemistry and Molecular Engineering, East China Normal University, China.,Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| |
Collapse
|
5
|
Sato K, Tanaka H. Synthesis of Lignans Based on a Borate-mediated One-pot Sequential Suzuki-Miyaura Coupling of Cyclic Boranes. Chemistry 2021; 27:9422-9428. [PMID: 33851478 DOI: 10.1002/chem.202100804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 12/15/2022]
Abstract
Lignans are a group of polyphenolic phytochemicals that possess a large spectrum of chemical structures and biological activities. Here the syntheses of lignans - anwulignan, burseran, dehydroxycubebin, ruburisandrin B, and sesamin - are achieved based on a borate-mediated one-pot sequential Suzuki-Miyaura coupling of cis- and trans-fused bicyclic boranes, which were prepared by diastereoselective cyclic hydroboration of exo-cyclic diene with cyclopentyl- and thexylboranes, respectively. A one-pot sequential Suzuki-Miyaura coupling of each cyclic borate with various aryl bromides initiated by activation of the cyclic borane with the carbon nucleophile provided 2,3-dibenzylbutane derivatives with different aromatic substituents. Finally, the syntheses of naturally occurring lignans were accomplished in several steps from the products of Suzuki-Miyaura coupling.
Collapse
Affiliation(s)
- Ko Sato
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1-H101 Ookayama, Meguro, Tokyo, 152-8552, Japan
| | - Hiroshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1-H101 Ookayama, Meguro, Tokyo, 152-8552, Japan
| |
Collapse
|
6
|
Harwood LA, Wong LL, Robertson J. Enzymatic Kinetic Resolution by Addition of Oxygen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lucy A. Harwood
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Luet L. Wong
- Department of Chemistry University of Oxford Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
- Oxford Suzhou Centre for Advanced Research Ruo Shui Road, Suzhou Industrial Park Jiangsu 215123 P. R. China
| | - Jeremy Robertson
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
- Oxford Suzhou Centre for Advanced Research Ruo Shui Road, Suzhou Industrial Park Jiangsu 215123 P. R. China
| |
Collapse
|
7
|
Harwood LA, Wong LL, Robertson J. Enzymatic Kinetic Resolution by Addition of Oxygen. Angew Chem Int Ed Engl 2021; 60:4434-4447. [PMID: 33037837 PMCID: PMC7986699 DOI: 10.1002/anie.202011468] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Indexed: 12/25/2022]
Abstract
Kinetic resolution using biocatalysis has proven to be an excellent complementary technique to traditional asymmetric catalysis for the production of enantioenriched compounds. Resolution using oxidative enzymes produces valuable oxygenated structures for use in synthetic route development. This Minireview focuses on enzymes which catalyse the insertion of an oxygen atom into the substrate and, in so doing, can achieve oxidative kinetic resolution. The Baeyer-Villiger rearrangement, epoxidation, and hydroxylation are included, and biological advancements in enzyme development, and applications of these key enantioenriched intermediates in natural product synthesis are discussed.
Collapse
Affiliation(s)
- Lucy A. Harwood
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Luet L. Wong
- Department of ChemistryUniversity of OxfordInorganic Chemistry LaboratorySouth Parks RoadOxfordOX1 3QRUK
- Oxford Suzhou Centre for Advanced ResearchRuo Shui Road, Suzhou Industrial ParkJiangsu215123P. R. China
| | - Jeremy Robertson
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
- Oxford Suzhou Centre for Advanced ResearchRuo Shui Road, Suzhou Industrial ParkJiangsu215123P. R. China
| |
Collapse
|
8
|
Xiang JC, Wang Q, Zhu J. Radical-Cation Cascade to Aryltetralin Cyclic Ether Lignans Under Visible-Light Photoredox Catalysis. Angew Chem Int Ed Engl 2020; 59:21195-21202. [PMID: 32744786 DOI: 10.1002/anie.202007548] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/27/2020] [Indexed: 12/16/2022]
Abstract
The development of concise, sustainable, and cost-effective synthesis of aryltetralin lignans, bearing either a fused lactone or cyclic ether, is of significant medicinal importance. Reported is that in the presence of Fukuzumi's acridinium salt under blue LED irradiation, functionalized dicinnamyl ether derivatives are converted into aryltetralin cyclic ether lignans with concurrent generation of three stereocenters in good to high yields with up to 20:1 diastereoselectivity. Oxidation of an alkene to the radical cation is key to the success of this formal Diels-Alder reaction of electronically mismatched diene and dienophile. Applying this methodology, six natural products, aglacin B, aglacin C, sulabiroin A, sulabiroin B, gaultherin C, and isoshonanin, are synthesized in only two to three steps from readily available biomass-derived monolignols. A revised structure is proposed for gaultherin C.
Collapse
Affiliation(s)
- Jia-Chen Xiang
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015, Lausanne, Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015, Lausanne, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015, Lausanne, Switzerland
| |
Collapse
|
9
|
Xiang J, Wang Q, Zhu J. Radical‐Cation Cascade to Aryltetralin Cyclic Ether Lignans Under Visible‐Light Photoredox Catalysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jia‐Chen Xiang
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| |
Collapse
|