1
|
Nicholas AD, Arteaga A, Ducati LC, Buck EC, Autschbach J, Surbella RG. Insight into the Structural and Emissive Behavior of a Three-Dimensional Americium(III) Formate Coordination Polymer. Chemistry 2023; 29:e202300077. [PMID: 36973189 DOI: 10.1002/chem.202300077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/29/2023]
Abstract
We report the structural, vibrational, and optical properties of americium formate (Am(CHO2 )3 ) crystals synthesized via the in situ hydrolysis of dimethylformamide (DMF). The coordination polymer features Am3+ ions linked by formate ligands into a three-dimensional network that is isomorphous to several lanthanide analogs, (e. g., Eu3+ , Nd3+ , Tb3+ ). Structure determination revealed a nine-coordinate Am3+ metal center that features a unique local C3v symmetry. The metal-ligand bonding interactions were investigated by vibrational spectroscopy, natural localized molecular orbital calculations, and the quantum theory of atoms in molecules. The results paint a predominantly ionic bond picture and suggest the metal-oxygen bonds increase in strength from Nd-O
Collapse
Affiliation(s)
- Aaron D Nicholas
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Ana Arteaga
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Lucas C Ducati
- Department of Fundamental Chemistry Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, 05508-000, Brazil
| | - Edgar C Buck
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo State University of New York, Buffalo, NY, 14260-3000, USA
| | - Robert G Surbella
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| |
Collapse
|
2
|
Katkova MA, Muravyeva MS, Zabrodina GS, Moskvitina OA, Kurskii YA, Ketkov SY. NMR SPECTROSCOPIC STUDY OF HETERONUCLEAR Ln(III)–Cu(II) METALLAMACROCYCLIC COMPLEXES IN AN AQUEOUS SOLUTION. J STRUCT CHEM+ 2022. [DOI: 10.1134/s002247662209013x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
3
|
Bansal D, Kaden P, Patzschke M, März J, Schmidt M. Comparative Analysis of Mononuclear 1:1 and 2:1 Tetravalent Actinide (U, Th, Np) Complexes: Crystal Structure, Spectroscopy, and Electrochemistry. Inorg Chem 2022; 61:10509-10520. [PMID: 35736135 DOI: 10.1021/acs.inorgchem.2c01405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Six mononuclear tetravalent actinide complexes (1-6) have been synthesized using a new Schiff base ligand 2-methoxy-6-(((2-methyl-1-(pyridin-2-yl)propyl)imino)methyl)phenol (HLpr). The HLpr is treated with tetravalent actinide elements in varied stoichiometries to afford mononuclear 1:1 complexes [MCl3-Lpr·nTHF] (1-3) and 2:1 complexes [MCl2-L2pr] (4-6) (M = Th4+ (1 and 4), U4+ (2 and 5), and Np4+ (3 and 6)). All complexes are characterized using different analytical techniques such as IR, NMR, and absorption spectroscopy as well as crystallography. UV-vis spectroscopy revealed more red-shifted absorption spectra for 2:1 complexes as compared to 1:1 complexes. 1H NMR of Th(IV) complexes exhibit diamagnetic spectra, whereas U(IV) and Np(IV) complexes revealed paramagnetically shifted 1H NMR. Interestingly, NMR signals are paramagnetically shifted between -70 and 40 ppm in 2 and 3 but are confined within -35 to 25 ppm in 2:1 complexes 5 and 6. Single-crystal structures for 1:1 complexes revealed an eight-coordinated Th(IV) complex (1) and seven-coordinated U(IV) (2) and Np(IV) (3) complexes. However, all 2:1 complexes 4-6 were isolated as eight-coordinated isostructural molecules. The geometry around the Th4+ center in 1 is found to be trigonal dodecahedral and capped trigonal prismatic around U(IV) and Np(IV) centers in 2 and 3, respectively. However, An4+ centers in 2:1 complexes are present in dodecahedral geometry. Importantly, 2:1 complexes exhibit increased bond distances in comparison to their 1:1 counterparts as well as interesting bond modulation with respect to ionic radii of An(IV) centers. Cyclic voltammetry displays an increased oxidation potential of the ligand by 300-500 mV, after coordination with An4+. CV studies indicate Th(IV)/Th(II) reduction beyond -2.3 V, whereas attempts were made to identify redox potentials for U(IV) and Np(IV) centers. Spectroscopic binding studies reveal that complex stability in 1:1 stoichiometry follows the order Th4+ ≈ U4+ > Np4+.
Collapse
Affiliation(s)
- Deepak Bansal
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Peter Kaden
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Michael Patzschke
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Juliane März
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Moritz Schmidt
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| |
Collapse
|
4
|
Santana FS, Perfetti M, Briganti M, Sacco F, Poneti G, Ravera E, Soares JF, Sessoli R. A dysprosium single molecule magnet outperforming current pseudocontact shift agents. Chem Sci 2022; 13:5860-5871. [PMID: 35685802 PMCID: PMC9132026 DOI: 10.1039/d2sc01619b] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/26/2022] [Indexed: 12/19/2022] Open
Abstract
A common criterion for designing performant single molecule magnets and pseudocontact shift tags is a large magnetic anisotropy. In this article we present a dysprosium complex chemically designed to exhibit strong easy-axis type magnetic anisotropy that is preserved in dichloromethane solution at room temperature. Our detailed theoretical and experimental studies on the magnetic properties allowed explaining several features typical of highly performant SMMs. Moreover, the NMR characterization shows remarkably large chemical shifts, outperforming the current state-of-the art PCS tags.
Collapse
Affiliation(s)
- Francielli S Santana
- Departamento de Química, Universidade Federal do Paraná, Centro Politécnico 81530-900 Curitiba PR Brazil
| | - Mauro Perfetti
- Department of Chemistry "U. Schiff", University of Florence Via della Lastruccia 3-13, Sesto Fiorentino 50019 Italy
- Research Unit Firenze, INSTM I-50019 Sesto Fiorentino Firenze Italy
| | - Matteo Briganti
- Departamento de Química, Universidade Federal do Paraná, Centro Politécnico 81530-900 Curitiba PR Brazil
- Department of Chemistry "U. Schiff", University of Florence Via della Lastruccia 3-13, Sesto Fiorentino 50019 Italy
| | - Francesca Sacco
- Department of Chemistry "U. Schiff", University of Florence Via della Lastruccia 3-13, Sesto Fiorentino 50019 Italy
- Magnetic Resonance Center (CERM), University of Florence Via Luigi Sacconi 6, Sesto Fiorentino 50019 Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine Via Luigi Sacconi 6, Sesto Fiorentino 50019 Italy
| | - Giordano Poneti
- Instituto de Química, Universidade Federal do Rio de Janeiro, Centro de Tecnologia - Cidade Universitária Avenida Athos da Silveira Ramos, 149 21941-909 Rio de Janeiro Brazil
| | - Enrico Ravera
- Department of Chemistry "U. Schiff", University of Florence Via della Lastruccia 3-13, Sesto Fiorentino 50019 Italy
- Magnetic Resonance Center (CERM), University of Florence Via Luigi Sacconi 6, Sesto Fiorentino 50019 Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine Via Luigi Sacconi 6, Sesto Fiorentino 50019 Italy
| | - Jaísa F Soares
- Departamento de Química, Universidade Federal do Paraná, Centro Politécnico 81530-900 Curitiba PR Brazil
| | - Roberta Sessoli
- Department of Chemistry "U. Schiff", University of Florence Via della Lastruccia 3-13, Sesto Fiorentino 50019 Italy
- Research Unit Firenze, INSTM I-50019 Sesto Fiorentino Firenze Italy
| |
Collapse
|
5
|
Lee YS, Mou Z, Opina ACL, Vasalatiy O. Origin of the Isomer Stability of Polymethylated DOTA Chelates Complexed with Ln 3+ ions. Eur J Inorg Chem 2021; 2021:1428-1440. [PMID: 36591318 PMCID: PMC9802879 DOI: 10.1002/ejic.202100019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid)-based chelates that give only a single isomer in solution when complexed with lanthanide (Ln3+) ions is of value for studying protein dynamics and interactions via NMR. Herein, we have investigated the geometries, energetics, and electrostatic potentials of Lu complexed with DOTA (1), ring methylated M4DOTA (2), and arm methylated R-DOTMA (3) and S-DOTMA (4), as well as, both ring and arm methylated 4S-4S-M4DOTMA (5) and 4S-4R-M4DOTMA (6) at the level of M06-L/6-31+G(d)-SDD, to elucidate the origin of the isomer stability. These analyses indicate that the electrostatic repulsion between the arm methyl and the neighboring carboxylate significantly destabilizes the square antiprism (SAP) isomer of Lu-5 and the twisted square antiprism (TSAP) isomer of Lu-6, while the steric repulsion between the ring and arm methyl groups attenuates the stability of both TSAP of Lu-5 and SAP of Lu-6. To rationalize the variable temperature proton NMR spectra, the energy barriers for the inter-conversion in Lu-5 and Lu-6 via arm rotation were also calculated. The modulation of the stability and rigidity of Ln complexes via a modification of DOTA is also discussed. Our investigation will aid to design better chelates for the Ln3+ ions for its use in molecular medicine.
Collapse
Affiliation(s)
- Yong-Sok Lee
- Dr. Yong-Sok Lee, Dr. Zhongyu Mou Center for Molecular Modeling, Office of Intramural Research, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, United States,Present address: Bioinformatics and Computational Bioscience Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Zhongyu Mou
- Dr. Yong-Sok Lee, Dr. Zhongyu Mou Center for Molecular Modeling, Office of Intramural Research, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, United States,Present address: Intramural Research Program, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, United States
| | - Ana Christina L. Opina
- Dr. Ana Christina L. Opina, Dr. Olga Vasalatiy Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD 20850, United States
| | - Olga Vasalatiy
- Dr. Ana Christina L. Opina, Dr. Olga Vasalatiy Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD 20850, United States
| |
Collapse
|
6
|
Parker D, Suturina EA, Kuprov I, Chilton NF. How the Ligand Field in Lanthanide Coordination Complexes Determines Magnetic Susceptibility Anisotropy, Paramagnetic NMR Shift, and Relaxation Behavior. Acc Chem Res 2020; 53:1520-1534. [PMID: 32667187 PMCID: PMC7467575 DOI: 10.1021/acs.accounts.0c00275] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Indexed: 01/27/2023]
Abstract
Complexes of lanthanide(III) ions are being actively studied because of their unique ground and excited state properties and the associated optical and magnetic behavior. In particular, they are used as emissive probes in optical spectroscopy and microscopy and as contrast agents in magnetic resonance imaging (MRI). However, the design of new complexes with specific optical and magnetic properties requires a thorough understanding of the correlation between molecular structure and electric and magnetic susceptibilities, as well as their anisotropies. The traditional Judd-Ofelt-Mason theory has failed to offer useful guidelines for systematic design of emissive lanthanide optical probes. Similarly, Bleaney's theory of magnetic anisotropy and its modifications fail to provide accurate detail that permits new paramagnetic shift reagents to be designed rather than discovered.A key determinant of optical and magnetic behavior in f-element compounds is the ligand field, often considered as an electrostatic field at the lanthanide created by the ligands. The resulting energy level splitting is a sensitive function of several factors: the nature and polarizability of the whole ligand and its donor atoms; the geometric details of the coordination polyhedron; the presence and extent of solvent interactions; specific hydrogen bonding effects on donor atoms and the degree of supramolecular order in the system. The relative importance of these factors can vary widely for different lanthanide ions and ligands. For nuclear magnetic properties, it is both the ligand field splitting and the magnetic susceptibility tensor, notably its anisotropy, that determine paramagnetic shifts and nuclear relaxation enhancement.We review the factors that control the ligand field in lanthanide complexes and link these to aspects of their utility in magnetic resonance and optical emission spectroscopy and imaging. We examine recent progress in this area particularly in the theory of paramagnetic chemical shift and relaxation enhancement, where some long-neglected effects of zero-field splitting, magnetic susceptibility anisotropy, and spatial distribution of lanthanide tags have been accommodated in an elegant way.
Collapse
Affiliation(s)
- David Parker
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K.
| | | | - Ilya Kuprov
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Nicholas F. Chilton
- Department
of Chemistry, School of Natural Sciences, The University of Manchester, Manchester M13 9PL, U.K.
| |
Collapse
|