1
|
Wu Z, Boyer C. Near-Infrared Light-Induced Reversible Deactivation Radical Polymerization: Expanding Frontiers in Photopolymerization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304942. [PMID: 37750445 PMCID: PMC10667859 DOI: 10.1002/advs.202304942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/08/2023] [Indexed: 09/27/2023]
Abstract
Photoinduced reversible deactivation radical polymerization (photo-RDRP) or photoinduced controlled/living radical polymerization has emerged as a versatile and powerful technique for preparing functional and advanced polymer materials under mild conditions by harnessing light energy. While UV and visible light (λ = 400-700 nm) are extensively employed in photo-RDRP, the utilization of near-infrared (NIR) wavelengths (λ = 700-2500 nm) beyond the visible region remains relatively unexplored. NIR light possesses unique properties, including enhanced light penetration, reduced light scattering, and low biomolecule absorption, thereby providing opportunities for applying photo-RDRP in the fields of manufacturing and medicine. This comprehensive review categorizes all known NIR light-induced RDRP (NIR-RDRP) systems into four mechanism-based types: mediation by upconversion nanoparticles, mediation by photocatalysts, photothermal conversion, and two-photon absorption. The distinct photoinitiation pathways associated with each mechanism are discussed. Furthermore, this review highlights the diverse applications of NIR-RDRP reported to date, including 3D printing, polymer brush fabrication, drug delivery, nanoparticle synthesis, and hydrogel formation. By presenting these applications, the review underscores the exceptional capabilities of NIR-RDRP and offers guidance for developing high-performance and versatile photopolymerization systems. Exploiting the unique properties of NIR light unlocks new opportunities for synthesizing functional and advanced polymer materials.
Collapse
Affiliation(s)
- Zilong Wu
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicineSchool of Chemical EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicineSchool of Chemical EngineeringThe University of New South WalesSydneyNSW2052Australia
| |
Collapse
|
2
|
Wu Z, Jung K, Wu C, Ng G, Wang L, Liu J, Boyer C. Selective Photoactivation of Trithiocarbonates Mediated by Metal Naphthalocyanines and Overcoming Activation Barriers Using Thermal Energy. J Am Chem Soc 2022; 144:995-1005. [PMID: 35005982 DOI: 10.1021/jacs.1c11700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Metal naphthalocyanines (MNcs) were demonstrated to be efficient photocatalysts to activate photoinduced electron-transfer reversible addition-fragmentation chain transfer (PET-RAFT) polymerization, enabling well-controlled polymerization of (meth)acrylates under near-infrared (λ = 780 nm) light. Owing to their lower redox potential compared to previously explored photocatalysts, the activation of trithiocarbonate RAFT agents exhibited a unique selectivity that was dependent on the nature of the R group. Specifically, MNcs were capable in activating tertiary R group trithiocarbonates, whereas no activation of the trithiocarbonate possessing a secondary R group was observed. The combination of density functional theory calculations and experimental studies have revealed new mechanistic insights into the factors governing a PET-RAFT mechanism and explained this unique selectivity of MNcs toward tertiary carbon trithiocarbonates. Interestingly, by increasing the reaction temperature moderately (i.e., ∼15 °C), the energy barrier prohibiting the photoactivation of the trithiocarbonate with a secondary R group was overcome, enabling their successful activation.
Collapse
Affiliation(s)
- Zilong Wu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, China.,Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Kenward Jung
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Chenyu Wu
- Qingdao Institute for Theoretical and Computational Sciences, Shandong University, Qingdao 266237, China
| | - Gervase Ng
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Lei Wang
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, China
| | - Jingquan Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, China
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
3
|
Mao Q, Fang J, Wang A, Zhang Y, Cui C, Ye S, Zhao Y, Feng Y, Li J, Shi H. Aggregation of Gold Nanoparticles Triggered by Hydrogen Peroxide‐Initiated Chemiluminescence for Activated Tumor Theranostics. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Qiulian Mao
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Soochow University Suzhou 215123 P. R. China
| | - Jing Fang
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Soochow University Suzhou 215123 P. R. China
| | - Anna Wang
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Soochow University Suzhou 215123 P. R. China
| | - Yuqi Zhang
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Soochow University Suzhou 215123 P. R. China
| | - Chaoxiang Cui
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Soochow University Suzhou 215123 P. R. China
| | - Shuyue Ye
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Soochow University Suzhou 215123 P. R. China
| | - Yan Zhao
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Soochow University Suzhou 215123 P. R. China
| | - Yali Feng
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Soochow University Suzhou 215123 P. R. China
| | - Jiachen Li
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Soochow University Suzhou 215123 P. R. China
| | - Haibin Shi
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Soochow University Suzhou 215123 P. R. China
| |
Collapse
|
4
|
Mao Q, Fang J, Wang A, Zhang Y, Cui C, Ye S, Zhao Y, Feng Y, Li J, Shi H. Aggregation of Gold Nanoparticles Triggered by Hydrogen Peroxide-Initiated Chemiluminescence for Activated Tumor Theranostics. Angew Chem Int Ed Engl 2021; 60:23805-23811. [PMID: 34472168 DOI: 10.1002/anie.202109863] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/28/2021] [Indexed: 12/13/2022]
Abstract
Developing endogenous photo-activated theranostic platforms to overcome the limitation of low tissue-penetration from external light sources is highly significant for cancer diagnosis and treatment. We report a H2 O2 -initiated chemiluminescence (CL)-triggered nanoparticle aggregation strategy to activate theranostic functions of gold nanoparticles (AuNPs) for effective tumor imaging and therapy. Two types of AuNPs (tAuNP & mAuNP) were designed and fabricated by conjugating 2,5-diphenyltetrazole and methacrylic acid onto the surface of AuNPs, respectively. Luminol was adsorbed onto the mAuNPs to afford self-illuminating mAuNP/Lu NPs that could produce strong CL by reaction with H2 O2 in the tumor microenvironment, which triggers significant aggregation of AuNPs resulting in enhanced accumulation and retention of AuNPs for activated photoacoustic imaging and photothermal therapy of tumors. We thus believe that this approach may offer a promising tool for effective tumor treatment.
Collapse
Affiliation(s)
- Qiulian Mao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou, 215123, P. R. China
| | - Jing Fang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou, 215123, P. R. China
| | - Anna Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou, 215123, P. R. China
| | - Yuqi Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou, 215123, P. R. China
| | - Chaoxiang Cui
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou, 215123, P. R. China
| | - Shuyue Ye
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou, 215123, P. R. China
| | - Yan Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou, 215123, P. R. China
| | - Yali Feng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou, 215123, P. R. China
| | - Jiachen Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou, 215123, P. R. China
| | - Haibin Shi
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
5
|
Zhang L, Shi X, Zhang Z, Kuchel RP, Namivandi‐Zangeneh R, Corrigan N, Jung K, Liang K, Boyer C. Porphyrinic Zirconium Metal–Organic Frameworks (MOFs) as Heterogeneous Photocatalysts for PET‐RAFT Polymerization and Stereolithography. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014208] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Liwen Zhang
- Australian Centre for NanoMedicine Centre for Advanced Macromolecular Design School of Chemical Engineering The University of New South Wales Sydney, New South Wales 2052 Australia
| | - Xiaobing Shi
- Australian Centre for NanoMedicine Centre for Advanced Macromolecular Design School of Chemical Engineering The University of New South Wales Sydney, New South Wales 2052 Australia
| | - Zhiheng Zhang
- Australian Centre for NanoMedicine Centre for Advanced Macromolecular Design School of Chemical Engineering The University of New South Wales Sydney, New South Wales 2052 Australia
| | - Rhiannon P Kuchel
- Electron Microscope Unit Mark Wainwright Analytical Centre The University of New South Wales Sydney New South Wales 2052 Australia
| | - Rashin Namivandi‐Zangeneh
- Australian Centre for NanoMedicine Centre for Advanced Macromolecular Design School of Chemical Engineering The University of New South Wales Sydney, New South Wales 2052 Australia
| | - Nathaniel Corrigan
- Australian Centre for NanoMedicine Centre for Advanced Macromolecular Design School of Chemical Engineering The University of New South Wales Sydney, New South Wales 2052 Australia
| | - Kenward Jung
- Australian Centre for NanoMedicine Centre for Advanced Macromolecular Design School of Chemical Engineering The University of New South Wales Sydney, New South Wales 2052 Australia
| | - Kang Liang
- Australian Centre for NanoMedicine Centre for Advanced Macromolecular Design School of Chemical Engineering The University of New South Wales Sydney, New South Wales 2052 Australia
- Graduate School of Biomedical Engineering The University of New South Wales Sydney New South Wales 2052 Australia
| | - Cyrille Boyer
- Australian Centre for NanoMedicine Centre for Advanced Macromolecular Design School of Chemical Engineering The University of New South Wales Sydney, New South Wales 2052 Australia
| |
Collapse
|
6
|
Zhang L, Shi X, Zhang Z, Kuchel RP, Namivandi‐Zangeneh R, Corrigan N, Jung K, Liang K, Boyer C. Porphyrinic Zirconium Metal–Organic Frameworks (MOFs) as Heterogeneous Photocatalysts for PET‐RAFT Polymerization and Stereolithography. Angew Chem Int Ed Engl 2021; 60:5489-5496. [DOI: 10.1002/anie.202014208] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Liwen Zhang
- Australian Centre for NanoMedicine Centre for Advanced Macromolecular Design School of Chemical Engineering The University of New South Wales Sydney, New South Wales 2052 Australia
| | - Xiaobing Shi
- Australian Centre for NanoMedicine Centre for Advanced Macromolecular Design School of Chemical Engineering The University of New South Wales Sydney, New South Wales 2052 Australia
| | - Zhiheng Zhang
- Australian Centre for NanoMedicine Centre for Advanced Macromolecular Design School of Chemical Engineering The University of New South Wales Sydney, New South Wales 2052 Australia
| | - Rhiannon P Kuchel
- Electron Microscope Unit Mark Wainwright Analytical Centre The University of New South Wales Sydney New South Wales 2052 Australia
| | - Rashin Namivandi‐Zangeneh
- Australian Centre for NanoMedicine Centre for Advanced Macromolecular Design School of Chemical Engineering The University of New South Wales Sydney, New South Wales 2052 Australia
| | - Nathaniel Corrigan
- Australian Centre for NanoMedicine Centre for Advanced Macromolecular Design School of Chemical Engineering The University of New South Wales Sydney, New South Wales 2052 Australia
| | - Kenward Jung
- Australian Centre for NanoMedicine Centre for Advanced Macromolecular Design School of Chemical Engineering The University of New South Wales Sydney, New South Wales 2052 Australia
| | - Kang Liang
- Australian Centre for NanoMedicine Centre for Advanced Macromolecular Design School of Chemical Engineering The University of New South Wales Sydney, New South Wales 2052 Australia
- Graduate School of Biomedical Engineering The University of New South Wales Sydney New South Wales 2052 Australia
| | - Cyrille Boyer
- Australian Centre for NanoMedicine Centre for Advanced Macromolecular Design School of Chemical Engineering The University of New South Wales Sydney, New South Wales 2052 Australia
| |
Collapse
|
7
|
An Z, Zhu S, An Z. Heterogeneous photocatalytic reversible deactivation radical polymerization. Polym Chem 2021. [DOI: 10.1039/d1py00130b] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Photocatalytic reversible deactivation radical polymerization (RDRP) permits the use of sustainable solar light for spatiotemporal regulation of radical polymerization under mild conditions.
Collapse
Affiliation(s)
- Zixin An
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Shilong Zhu
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Zesheng An
- College of Chemistry
- Jilin University
- Changchun 130012
- China
- State Key Laboratory of Supramolecular Structure and Materials
| |
Collapse
|
8
|
Allison‐Logan S, Fu Q, Sun Y, Liu M, Xie J, Tang J, Qiao GG. From UV to NIR: A Full‐Spectrum Metal‐Free Photocatalyst for Efficient Polymer Synthesis in Aqueous Conditions. Angew Chem Int Ed Engl 2020; 59:21392-21396. [DOI: 10.1002/anie.202007196] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/20/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Stephanie Allison‐Logan
- Polymer Science Group Department of Chemical Engineering University of Melbourne Parkville VIC 3010 Australia
| | - Qiang Fu
- Polymer Science Group Department of Chemical Engineering University of Melbourne Parkville VIC 3010 Australia
- Centre for Technology in Water and Wastewater (CTWW) School of Civil and Environmental Engineering University of Technology Sydney Ultimo NSW 2007 Australia
| | - Yongkang Sun
- Polymer Science Group Department of Chemical Engineering University of Melbourne Parkville VIC 3010 Australia
| | - Min Liu
- Polymer Science Group Department of Chemical Engineering University of Melbourne Parkville VIC 3010 Australia
| | - Jijia Xie
- Solar Energy & Advanced Materials Research Group Department of Chemical Engineering University College London Torrington Place London WC1E JE UK
| | - Junwang Tang
- Solar Energy & Advanced Materials Research Group Department of Chemical Engineering University College London Torrington Place London WC1E JE UK
| | - Greg G. Qiao
- Polymer Science Group Department of Chemical Engineering University of Melbourne Parkville VIC 3010 Australia
| |
Collapse
|
9
|
Allison‐Logan S, Fu Q, Sun Y, Liu M, Xie J, Tang J, Qiao GG. From UV to NIR: A Full‐Spectrum Metal‐Free Photocatalyst for Efficient Polymer Synthesis in Aqueous Conditions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007196] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Stephanie Allison‐Logan
- Polymer Science Group Department of Chemical Engineering University of Melbourne Parkville VIC 3010 Australia
| | - Qiang Fu
- Polymer Science Group Department of Chemical Engineering University of Melbourne Parkville VIC 3010 Australia
- Centre for Technology in Water and Wastewater (CTWW) School of Civil and Environmental Engineering University of Technology Sydney Ultimo NSW 2007 Australia
| | - Yongkang Sun
- Polymer Science Group Department of Chemical Engineering University of Melbourne Parkville VIC 3010 Australia
| | - Min Liu
- Polymer Science Group Department of Chemical Engineering University of Melbourne Parkville VIC 3010 Australia
| | - Jijia Xie
- Solar Energy & Advanced Materials Research Group Department of Chemical Engineering University College London Torrington Place London WC1E JE UK
| | - Junwang Tang
- Solar Energy & Advanced Materials Research Group Department of Chemical Engineering University College London Torrington Place London WC1E JE UK
| | - Greg G. Qiao
- Polymer Science Group Department of Chemical Engineering University of Melbourne Parkville VIC 3010 Australia
| |
Collapse
|
10
|
Xia L, Cheng B, Zeng T, Nie X, Chen G, Zhang Z, Zhang W, Hong C, You Y. Polymer Nanofibers Exhibiting Remarkable Activity in Driving the Living Polymerization under Visible Light and Reusability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902451. [PMID: 32195082 PMCID: PMC7080551 DOI: 10.1002/advs.201902451] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Visible light-driving syntheses have emerged as a powerful tool for organic synthesis and for the preparation of macromolecules under mild and environmentally benign conditions. However, precious but nonreusable photosensitizers or photocatalysts are often required to activate the reaction, limiting its practicality. Here, it is reported that poly(1,4-diphenylbutadiyne) (PDPB) nanofibers exhibit remarkable activity in driving the living free radical polymerization under visible light. Moreover, PDPB nanofibers are very stable under irradiation of visible light and can be reused without appreciable loss of activity even after repeated cycling. The nanofiber will be a promising photocatalyst with excellent reusability and stability for the reactions driven by visible light.
Collapse
Affiliation(s)
- Lei Xia
- Hefei National Laboratory for Physical Sciences at the MicroscaleCAS Key Laboratory of Soft Matter ChemistryDepartment of Polymer Science and EngineeringUniversity of Science and Technology of ChinaHefei230026P. R. China
| | - Bo‐Fei Cheng
- Hefei National Laboratory for Physical Sciences at the MicroscaleCAS Key Laboratory of Soft Matter ChemistryDepartment of Polymer Science and EngineeringUniversity of Science and Technology of ChinaHefei230026P. R. China
| | - Tian‐You Zeng
- Hefei National Laboratory for Physical Sciences at the MicroscaleCAS Key Laboratory of Soft Matter ChemistryDepartment of Polymer Science and EngineeringUniversity of Science and Technology of ChinaHefei230026P. R. China
| | - Xuan Nie
- Hefei National Laboratory for Physical Sciences at the MicroscaleCAS Key Laboratory of Soft Matter ChemistryDepartment of Polymer Science and EngineeringUniversity of Science and Technology of ChinaHefei230026P. R. China
| | - Guang Chen
- Hefei National Laboratory for Physical Sciences at the MicroscaleCAS Key Laboratory of Soft Matter ChemistryDepartment of Polymer Science and EngineeringUniversity of Science and Technology of ChinaHefei230026P. R. China
| | - Ze Zhang
- Hefei National Laboratory for Physical Sciences at the MicroscaleCAS Key Laboratory of Soft Matter ChemistryDepartment of Polymer Science and EngineeringUniversity of Science and Technology of ChinaHefei230026P. R. China
| | - Wen‐Jian Zhang
- Hefei National Laboratory for Physical Sciences at the MicroscaleCAS Key Laboratory of Soft Matter ChemistryDepartment of Polymer Science and EngineeringUniversity of Science and Technology of ChinaHefei230026P. R. China
| | - Chun‐Yan Hong
- Hefei National Laboratory for Physical Sciences at the MicroscaleCAS Key Laboratory of Soft Matter ChemistryDepartment of Polymer Science and EngineeringUniversity of Science and Technology of ChinaHefei230026P. R. China
| | - Ye‐Zi You
- Hefei National Laboratory for Physical Sciences at the MicroscaleCAS Key Laboratory of Soft Matter ChemistryDepartment of Polymer Science and EngineeringUniversity of Science and Technology of ChinaHefei230026P. R. China
| |
Collapse
|
11
|
Ding Z, Wang S, Chang X, Wang DH, Zhang T. Nano-MOF@defected film C3N4 Z-scheme composite for visible-light photocatalytic nitrogen fixation. RSC Adv 2020; 10:26246-26255. [PMID: 35519729 PMCID: PMC9055406 DOI: 10.1039/d0ra03562a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
Photocatalytic nitrogen fixation has attracted extensive attention in recent years.
Collapse
Affiliation(s)
- Zhu Ding
- School of Materials Science and Engineering
- School of Physics
- Tianjin Key Laboratory of Photonics Materials and Technology for Information Science
- Nankai University
- Tianjin 300350
| | - Shuo Wang
- School of Materials Science and Engineering
- School of Physics
- Tianjin Key Laboratory of Photonics Materials and Technology for Information Science
- Nankai University
- Tianjin 300350
| | - Xue Chang
- School of Materials Science and Engineering
- School of Physics
- Tianjin Key Laboratory of Photonics Materials and Technology for Information Science
- Nankai University
- Tianjin 300350
| | - Dan-Hong Wang
- School of Materials Science and Engineering
- School of Physics
- Tianjin Key Laboratory of Photonics Materials and Technology for Information Science
- Nankai University
- Tianjin 300350
| | - Tianhao Zhang
- School of Materials Science and Engineering
- School of Physics
- Tianjin Key Laboratory of Photonics Materials and Technology for Information Science
- Nankai University
- Tianjin 300350
| |
Collapse
|
12
|
Wu Z, Jung K, Boyer C. Effective Utilization of NIR Wavelengths for Photo‐Controlled Polymerization: Penetration Through Thick Barriers and Parallel Solar Syntheses. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912484] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Zilong Wu
- Centre for Advanced Macromolecular Design, Australian Centre for NanomedicineSchool of Chemical EngineeringThe University of New South Wales Sydney NSW 2052 Australia
| | - Kenward Jung
- Centre for Advanced Macromolecular Design, Australian Centre for NanomedicineSchool of Chemical EngineeringThe University of New South Wales Sydney NSW 2052 Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design, Australian Centre for NanomedicineSchool of Chemical EngineeringThe University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
13
|
Wu Z, Jung K, Boyer C. Effective Utilization of NIR Wavelengths for Photo-Controlled Polymerization: Penetration Through Thick Barriers and Parallel Solar Syntheses. Angew Chem Int Ed Engl 2019; 59:2013-2017. [PMID: 31692178 DOI: 10.1002/anie.201912484] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/29/2019] [Indexed: 11/07/2022]
Abstract
This contribution details an efficient and controlled photopolymerization regulated by far-red (λ=680 nm) and NIR (λ=780 and 850 nm) light in the presence of aluminium phthalocyanine and aluminium naphthalocyanine. Initiating radicals are generated by photosensitization of peroxides affording an effective strategy that provides controlled polymerization of a variety of monomers with excellent living characteristics. Critically, long wavelength irradiation provides penetration through thick barriers, affording unprecedented rates of controlled polymerization that can open new and exciting applications. Furthermore, a more optimized approach to performing solar syntheses is presented. By combining the narrow Q-bands of these photocatalysts with others possessing complementary absorptions, layered, independent polymerizations and organic transformations may be performed in parallel under a single broadband emission source, such as sunlight.
Collapse
Affiliation(s)
- Zilong Wu
- Centre for Advanced Macromolecular Design, Australian Centre for Nanomedicine, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Kenward Jung
- Centre for Advanced Macromolecular Design, Australian Centre for Nanomedicine, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design, Australian Centre for Nanomedicine, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|