1
|
Wang B, Zhang X, Cao Y, Zou L, Qi X, Lu Q. Electrooxidative Activation of B-B Bond in B 2 cat 2 : Access to gem-Diborylalkanes via Paired Electrolysis. Angew Chem Int Ed Engl 2023; 62:e202218179. [PMID: 36722684 DOI: 10.1002/anie.202218179] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 02/02/2023]
Abstract
This report describes the unprecedented electrooxidation of a solvent (e.g., DMF)-ligated B2 cat2 complex, whereby a solvent-stabilized boryl radical is formed via quasi-homolytic cleavage of the B-B bond in a DMF-ligated B2 cat2 radical cation. Cyclic voltammetry and density functional theory provide evidence to support this novel B-B bond activation strategy. Furthermore, a strategy for the electrochemical gem-diborylation of gem-bromides via paired electrolysis is developed for the first time, affording a range of versatile gem-diborylalkanes, which are widely used in synthetic society. Notably, this reaction approach is scalable, transition-metal-free, and requires no external activator.
Collapse
Affiliation(s)
- Bingbing Wang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Xiangyu Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Yangmin Cao
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Long Zou
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Xiaotian Qi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Qingquan Lu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
2
|
Qin Q, Cheng Z, Jiao N. Recent Applications of Trifluoromethanesulfonic Anhydride in Organic Synthesis. Angew Chem Int Ed Engl 2023; 62:e202215008. [PMID: 36541579 DOI: 10.1002/anie.202215008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Trifluoromethanesulfonic anhydride has been widely used in synthetic organic chemistry, not only for the conversion of various oxygen-containing compounds to the triflates, but also for the electrophilic activation and further conversion of amides, sulfoxides, and phosphorus oxides. In recent years, the utilization of Tf2 O as an activator for nitrogen-containing heterocycles, nitriles and nitro groups has become a promising tool for the development of new valuable methods with considerable success. In addition, Tf2 O has been used as an efficient radical trifluoromethylation and trifluoromethylthiolation reagent due to the contained SO2 CF3 fragment, and significant progress has been made in this area. This review summarizes the recent progress in the applications of Tf2 O in the above two aspects, and aims to illustrate the role and potential application of this reagent in organic synthesis.
Collapse
Affiliation(s)
- Qixue Qin
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China.,Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
3
|
Friedrich M, Manolikakes G. Base‐mediated C4‐selective C‐H‐sulfonylation of pyridine. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marius Friedrich
- University of Kaiserslautern: Technische Universitat Kaiserslautern Chemistry GERMANY
| | - Georg Manolikakes
- TU Kaiserslautern fachbereich Chemie Erwin-schrödinger-Str. Geb 54 67663 Kaiserslautern GERMANY
| |
Collapse
|
4
|
Qu CH, Gao LX, Tang Y, Liu Y, Luo XQ, Song GT. Metal-Free Reductive Coupling of para-Quinone Methides with 4-Cyanopyridines Enabled by Pyridine-Boryl Radicals: Access to Pyridylated Diarylmethanes with Anti-Cancer Activity. Chemistry 2022; 28:e202200264. [PMID: 35301762 DOI: 10.1002/chem.202200264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 11/07/2022]
Abstract
Reported herein is a streamlined protocol to produce pyridylated diarylmethanes through pyridine-boryl radical induced reductive coupling between para-quinone methides (p-QMs) and 4-cyanopyridines using bis(pinacolato)diboron (B2 pin2 ) as a templated reagent. The metal-free process is characterized by an operationally simple approach, excellent chemoselectivity (1,2- vs. 1,6-selectivity), and a broad substrate scope with good functional group compatibility. The mechanistic studies provided important insights into the reductive cross-coupling process between diarylmethyl radical and pyridine-boryl radical. Moreover, part of the obtained pyridylated diarylmethane products were screened against a panel of cancer cell lines, and 3 v was confirmed to significantly inhibit the proliferation of head and neck squamous cell carcinoma (HNSCC) cells. This method offers a platform for the preparation of new lead compounds with antitumor activity.
Collapse
Affiliation(s)
- Chuan-Hua Qu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, P. R. China
| | - Li-Xia Gao
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, P. R. China
| | - Yan Tang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, P. R. China
| | - Yuan Liu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, P. R. China
| | - Xiao-Qin Luo
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, P. R. China
| | - Gui-Ting Song
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, P. R. China
| |
Collapse
|
5
|
Che YY, Yue Y, Lin LZ, Pei B, Deng X, Feng C. Palladium-Catalyzed Electrophilic Functionalization of Pyridine Derivatives through Phosphonium Salts. Angew Chem Int Ed Engl 2020; 59:16414-16419. [PMID: 32533596 DOI: 10.1002/anie.202006724] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/30/2020] [Indexed: 12/11/2022]
Abstract
Herein, we report a highly efficient and practical method for pyridine-derived heterobiaryl synthesis through palladium-catalyzed electrophilic functionalization of easily available pyridine-derived quaternary phosphonium salts. The nice generality of this reaction was goes beyond arylation, enabling facile incorporation of diverse carbon-based fragments, including alkenyl, alkynyl, and also allyl fragments, onto the pyridine core. Notably, the silver salt additive is revealed to be of vital importance for the success of this transformation and its pivotal role as transmetallation mediator, which guarantees a smooth transfer of pyridyl group to palladium intermediate, is also described.
Collapse
Affiliation(s)
- Yuan-Yuan Che
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Yanni Yue
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Ling-Zhi Lin
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Bingbing Pei
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Xuezu Deng
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Chao Feng
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| |
Collapse
|
6
|
Che Y, Yue Y, Lin L, Pei B, Deng X, Feng C. Palladium‐Catalyzed Electrophilic Functionalization of Pyridine Derivatives through Phosphonium Salts. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yuan‐Yuan Che
- Technical Institute of Fluorochemistry (TIF)Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Yanni Yue
- Technical Institute of Fluorochemistry (TIF)Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Ling‐Zhi Lin
- Technical Institute of Fluorochemistry (TIF)Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Bingbing Pei
- Technical Institute of Fluorochemistry (TIF)Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Xuezu Deng
- Technical Institute of Fluorochemistry (TIF)Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Chao Feng
- Technical Institute of Fluorochemistry (TIF)Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University 30 South Puzhu Road Nanjing 211816 P. R. China
| |
Collapse
|
7
|
Zhou M, Tsien J, Qin T. Sulfur(IV)-Mediated Unsymmetrical Heterocycle Cross-Couplings. Angew Chem Int Ed Engl 2020; 59:7372-7376. [PMID: 32043749 DOI: 10.1002/anie.201915425] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Indexed: 11/09/2022]
Abstract
Despite the tremendous utilities of metal-mediated cross-couplings in modern organic chemistry, coupling reactions involving nitrogenous heteroarenes remain a challenging undertaking - coordination of Lewis basic atoms into metal centers often necessitate elevated temperature, high catalyst loading, etc. Herein, we report a sulfur (IV) mediated cross-coupling amendable for the efficient synthesis of heteroaromatic substrates. Addition of heteroaryl nucleophiles to a simple, readily-accessible alkyl sulfinyl (IV) chloride allows formation of a trigonal bipyramidal sulfurane intermediate. Reductive elimination therefrom provides bis-heteroaryl products in a practical and efficient fashion.
Collapse
Affiliation(s)
- Min Zhou
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9038, USA
| | - Jet Tsien
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9038, USA
| | - Tian Qin
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9038, USA
| |
Collapse
|
8
|
Zhou M, Tsien J, Qin T. Sulfur(IV)‐Mediated Unsymmetrical Heterocycle Cross‐Couplings. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Min Zhou
- Department of BiochemistryThe University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard Dallas TX 75390-9038 USA
| | - Jet Tsien
- Department of BiochemistryThe University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard Dallas TX 75390-9038 USA
| | - Tian Qin
- Department of BiochemistryThe University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard Dallas TX 75390-9038 USA
| |
Collapse
|