1
|
Froitzheim T, Kunze L, Grimme S, Herbert JM, Mewes JM. Benchmarking Charge-Transfer Excited States in TADF Emitters: ΔDFT Outperforms TD-DFT for Emission Energies. J Phys Chem A 2024; 128:6324-6335. [PMID: 39028862 DOI: 10.1021/acs.jpca.4c03273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Charge-transfer (CT) excited states are crucial to organic light-emitting diodes (OLEDs), particularly to those based on thermally activated delayed fluorescence (TADF). However, accurately modeling CT states remains challenging, even with modern implementations of (time-dependent) density functional theory [(TD-)DFT], especially in a dielectric environment. To identify shortcomings and improve the methodology, we previously established the STGABS27 benchmark set with highly accurate experimental references for the adiabatic energy gap between the lowest singlet and triplet excited states (ΔEST). Here, we diversify this set to the STGABS27-EMS benchmark by including experimental emission energies (Eem) and use this new set to (re)-evaluate various DFT-based approaches. Surprisingly, these tests demonstrate that a state-specific (un)restricted open-shell Kohn-Sham (U/ROKS) DFT coupled with a polarizable continuum model for perturbative state-specific nonequilibrium solvation (ptSS-PCM) provides exceptional accuracy for predicting Eem over a wide range of density functionals. In contrast, the main workhorse of the field, Tamm-Dancoff-approximated TD-DFT (TDA-DFT) paired with the same ptSS-PCM, is distinctly less accurate and strongly functional-dependent. More importantly, while TDA-DFT requires the choice of two very different density functionals for good performance on either ΔEST or Eem, the time-independent U/ROKS/PCM approaches deliver excellent accuracy for both quantities with a wide variety of functionals.
Collapse
Affiliation(s)
- Thomas Froitzheim
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Lukas Kunze
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jan-Michael Mewes
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
- beeOLED GmbH, Niedersedlitzer Str. 75 C, 01257 Dresden, Germany
| |
Collapse
|
2
|
Xia Y, Li J, Chen X, Li A, Guo K, Chen F, Zhao B, Chen Z, Wang H. Molecular Engineering of Push-Pull Diphenylsulfone Derivatives towards Aggregation-Induced Narrowband Deep Blue Thermally Activated Delayed Fluorescence (TADF) Emitters. Chemistry 2022; 28:e202202434. [PMID: 36168993 DOI: 10.1002/chem.202202434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Indexed: 12/29/2022]
Abstract
Narrowband deep blue thermally activated delayed fluorescent (TADF) materials have attracted significant attention. Herein, four asymmetrical structured TADF emitters based on diphenylsulfone (DPS) acceptor and 9,9-dimethyl-9,10-dihydroacridine (DMAC) donor with progressive performances were developed. The tert-butyloxy auxiliary electron-donor was adopted to restrict the intramolecular rotations and provide efficient steric hindrance. Regioisomerization by altering the substitution position of DMAC on DPS unit further enhanced the intra- and inter-molecular interactions. The accompanying effects yielded increased energy level, minimized reorganization energy, and inhibited non-radiative transitions in the crystals of tBuO-SOmAD, which achieved narrowband deep-blue emission peaking at 424 nm (FWHM=64 nm, ΦF =33.6 %) through aggregation-induced, blue-shifted emission (AIBSE). In addition, deep-blue organic light emitting diodes (OLEDs) based on tBuO-SOmAD realized the electroluminescence (EL) spectrum peaking located at 435 nm and CIE coordination of (0.12, 0.09).
Collapse
Affiliation(s)
- Yan Xia
- Ministry of Education Key Laboratory of, Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Jie Li
- Ministry of Education Key Laboratory of, Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Xu Chen
- School of Engineering Medicine, Beihang University, Beijing, 100191, P. R. China
| | - Anran Li
- School of Engineering Medicine, Beihang University, Beijing, 100191, P. R. China
| | - Kunpeng Guo
- Ministry of Education Key Laboratory of, Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Fei Chen
- Ningbo Institute of NPU, Northwestern Polytechnical University, Ningbo, 315000, P. R. China
| | - Bo Zhao
- Ministry of Education Key Laboratory of, Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Zhikuan Chen
- Ningbo Institute of NPU, Northwestern Polytechnical University, Ningbo, 315000, P. R. China
| | - Hua Wang
- Ministry of Education Key Laboratory of, Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan, 030024, P. R. China.,College of Textile Engineering, Taiyuan University of Technology, Jin Zhong, 030600, P. R. China
| |
Collapse
|
3
|
Zhao M, Li M, Li W, Du S, Chen Z, Luo M, Qiu Y, Lu X, Yang S, Wang Z, Zhang J, Su S, Ge Z. Highly Efficient Near‐Infrared Thermally Activated Delayed Fluorescent Emitters in Non‐Doped Electroluminescent Devices. Angew Chem Int Ed Engl 2022; 61:e202210687. [DOI: 10.1002/anie.202210687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Mengyu Zhao
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 315201 Ningbo P. R. China
- Nano Science and Technology Institute University of Science and Technology of China Suzhou 215123 P. R. China
| | - Mengke Li
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices South China University of Technology Wushan Road 381, Tianhe District Guangzhou 510640, Guangdong Province P. R. China
| | - Wei Li
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 315201 Ningbo P. R. China
| | - Songyu Du
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 315201 Ningbo P. R. China
| | - Zhenyu Chen
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 315201 Ningbo P. R. China
| | - Ming Luo
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 315201 Ningbo P. R. China
| | - Yi Qiu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 315201 Ningbo P. R. China
| | - Xumin Lu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 315201 Ningbo P. R. China
| | - Shengyi Yang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 China
| | - Zhichuan Wang
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 315201 Ningbo P. R. China
| | - Jiashen Zhang
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 315201 Ningbo P. R. China
| | - Shi‐Jian Su
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices South China University of Technology Wushan Road 381, Tianhe District Guangzhou 510640, Guangdong Province P. R. China
| | - Ziyi Ge
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 315201 Ningbo P. R. China
| |
Collapse
|
4
|
Highly Efficient Near‐Infrared Thermally Activated Delayed Fluorescent Emitters in Non‐Doped Electroluminescent Devices. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Zhou HY, Zhang DW, Li M, Chen CF. A Calix[3]acridan-Based Host-Guest Cocrystal Exhibiting Efficient Thermally Activated Delayed Fluorescence. Angew Chem Int Ed Engl 2022; 61:e202117872. [PMID: 35146858 DOI: 10.1002/anie.202117872] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Indexed: 02/06/2023]
Abstract
A supramolecular strategy to construct thermally activated delayed fluorescence (TADF) materials through host-guest charge transfer interactions was proposed. Consequently, a new class of macrocycle namely calix[3]acridan was conveniently synthesized in 90 % yield. The host-guest cocrystal formed by calix[3]acridan and 1,2-dicyanobenzene exhibited efficient TADF properties due to intense intermolecular charge transfer interactions. Moreover, the spatially separated highest occupied molecular orbital and lowest unoccupied molecular orbital resulted in a very small singlet-triplet energy gap of 0.014 eV and hence guaranteed an efficient reverse intersystem crossing for TADF. Especially, a high photoluminescence quantum yield of 70 % was achieved, and it represents the highest value among the reported intermolecular donor-acceptor TADF materials.
Collapse
Affiliation(s)
- He-Ye Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Da-Wei Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Zhou HY, Zhang DW, Li M, Chen CF. A Calix[3]acridan‐Based Host−Guest Cocrystal Exhibiting Efficient Thermally Activated Delayed Fluorescence. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- He-Ye Zhou
- Institute of Chemistry Chinese Academy of Sciences CAS Key Laboratory of Molecular Recognition and Function CHINA
| | - Da-Wei Zhang
- Institute of Chemistry Chinese Academy of Sciences CAS Key Laboratory of Molecular Recognition and Function CHINA
| | - Meng Li
- Institute of Chemistry Chinese Academy of Sciences CAS Key Laboratory of Molecular Recognition and Function CHINA
| | - Chuan-Feng Chen
- Institute of Chemistry Chinese Academy of Sciences CAS Key Laboratory of Molecular Recognition and Function Zhongguancun North First Street 2 100190 Beijing CHINA
| |
Collapse
|
7
|
Kunze L, Hansen A, Grimme S, Mewes JM. PCM-ROKS for the Description of Charge-Transfer States in Solution: Singlet-Triplet Gaps with Chemical Accuracy from Open-Shell Kohn-Sham Reaction-Field Calculations. J Phys Chem Lett 2021; 12:8470-8480. [PMID: 34449230 DOI: 10.1021/acs.jpclett.1c02299] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The adiabatic energy gap between the lowest singlet and triplet excited states ΔEST is a central property of thermally activated delayed fluorescence (TADF) emitters. Since these states are dominated by a charge-transfer character, causing strong orbital-relaxation and environmental effects, an accurate prediction of ΔEST is very challenging, even with modern quantum-chemical excited-state methods. Addressing this major challenge, we present an approach that combines spin-unrestricted (UKS) and restricted open-shell Kohn-Sham (ROKS) self-consistent field calculations with a polarizable-continuum model and range-separated hybrid functionals. Tests on a new representative benchmark set of 27 TADF emitters with accurately known ΔEST values termed STGABS27 reveal a robust and unprecedented performance with a mean absolute deviation of only 0.025 eV (∼0.5 kcal/mol) and few deviations greater than 0.05 eV (∼1 kcal/mol), even in electronically challenging cases. Requiring only two geometry optimizations per molecule at the ROKS/UKS level in a compact double-ζ basis, the approach is computationally efficient and can routinely be applied to molecules with more than 100 atoms.
Collapse
Affiliation(s)
- Lukas Kunze
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraßze 4, 53115 Bonn, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraßze 4, 53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraßze 4, 53115 Bonn, Germany
| | - Jan-Michael Mewes
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraßze 4, 53115 Bonn, Germany
| |
Collapse
|
8
|
Liu Z, Deng C, Su L, Wang D, Jiang Y, Tsuboi T, Zhang Q. Efficient Intramolecular Charge-Transfer Fluorophores Based on Substituted Triphenylphosphine Donors. Angew Chem Int Ed Engl 2021; 60:15049-15053. [PMID: 33872455 DOI: 10.1002/anie.202103075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/16/2021] [Indexed: 11/11/2022]
Abstract
Triphenylphosphine (TPP)-based luminescent compounds are rarely investigated because of the low photoluminescence quantum yield (PLQY). Here, we demonstrate that introducing steric hindrance groups to the TPP moiety and separating the orbitals involved in the transition can drastically suppress the non-radiative decay induced by structural distortion of TPP in the excited state. High PLQY up to 0.89 as well as thermally activated delayed fluorescence are observed from the intramolecular charge-transfer (ICT) molecules with substituted TPP donors (sTPPs) in doped films. The red organic light-emitting diodes employing these emitters achieve comparable external quantum efficiencies to the control device containing a classical phosphorescent dye, revealing the great potential of the ICT emitters based on electrochemically stable sTPPs.
Collapse
Affiliation(s)
- Zhang Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chao Deng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Liwu Su
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Dan Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yongshi Jiang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Taiju Tsuboi
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qisheng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.,State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
9
|
Liu Z, Deng C, Su L, Wang D, Jiang Y, Tsuboi T, Zhang Q. Efficient Intramolecular Charge‐Transfer Fluorophores Based on Substituted Triphenylphosphine Donors. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zhang Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Chao Deng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Liwu Su
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Dan Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Yongshi Jiang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Taiju Tsuboi
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Qisheng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
- State Key Laboratory of Clean Energy Utilization Zhejiang University Hangzhou 310027 China
| |
Collapse
|
10
|
Wu C, Liu W, Li K, Cheng G, Xiong J, Teng T, Che CM, Yang C. Face-to-Face Orientation of Quasiplanar Donor and Acceptor Enables Highly Efficient Intramolecular Exciplex Fluorescence. Angew Chem Int Ed Engl 2021; 60:3994-3998. [PMID: 33174374 DOI: 10.1002/anie.202013051] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/22/2020] [Indexed: 12/21/2022]
Abstract
Intramolecular through-space charge-transfer (TSCT) excited states have been exploited for developing thermally activated delayed fluorescence (TADF) emitters, but the tuning of excited state dynamics by conformational engineering remains sparse. Designed here is a series of TSCT emitters with precisely controlled alignment of the donor and acceptor segments. With increasing intramolecular π-π interactions, the radiative decay rate of the lowest singlet excited state (S1 ) progressively increased together with a suppression of nonradiative decay, leading to significantly enhanced photoluminescence quantum yields of up to 0.99 in doped thin films. A high-efficiency electroluminescence device, with a maximum external quantum efficiency (EQE) of 23.96 %, was achieved and maintains >20 % at a brightness of 1000 cd m-2 . This work sheds light on the importance of conformation control for achieving high-efficiency intramolecular exciplex emitters.
Collapse
Affiliation(s)
- Chao Wu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Weiqiang Liu
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Kai Li
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Gang Cheng
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Jinfan Xiong
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Teng Teng
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Chuluo Yang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| |
Collapse
|
11
|
Wu C, Liu W, Li K, Cheng G, Xiong J, Teng T, Che C, Yang C. Face‐to‐Face Orientation of Quasiplanar Donor and Acceptor Enables Highly Efficient Intramolecular Exciplex Fluorescence. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013051] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Chao Wu
- College of Materials Science and Engineering Shenzhen University Shenzhen 518055 P. R. China
| | - Weiqiang Liu
- State Key Laboratory of Synthetic Chemistry HKU-CAS Joint Laboratory on New Materials Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Kai Li
- College of Materials Science and Engineering Shenzhen University Shenzhen 518055 P. R. China
| | - Gang Cheng
- State Key Laboratory of Synthetic Chemistry HKU-CAS Joint Laboratory on New Materials Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Jinfan Xiong
- College of Materials Science and Engineering Shenzhen University Shenzhen 518055 P. R. China
| | - Teng Teng
- College of Materials Science and Engineering Shenzhen University Shenzhen 518055 P. R. China
| | - Chi‐Ming Che
- State Key Laboratory of Synthetic Chemistry HKU-CAS Joint Laboratory on New Materials Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Chuluo Yang
- College of Materials Science and Engineering Shenzhen University Shenzhen 518055 P. R. China
| |
Collapse
|
12
|
Haldar R, Jakoby M, Kozlowska M, Rahman Khan M, Chen H, Pramudya Y, Richards BS, Heinke L, Wenzel W, Odobel F, Diring S, Howard IA, Lemmer U, Wöll C. Tuning Optical Properties by Controlled Aggregation: Electroluminescence Assisted by Thermally-Activated Delayed Fluorescence from Thin Films of Crystalline Chromophores. Chemistry 2020; 26:17016-17020. [PMID: 32894609 PMCID: PMC7839528 DOI: 10.1002/chem.202003712] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/06/2020] [Indexed: 11/09/2022]
Abstract
Several photophysical properties of chromophores depend crucially on intermolecular interactions. Thermally-activated delayed fluorescence (TADF) is often influenced by close packing of the chromophore assembly. In this context, the metal-organic framework (MOF) approach has several advantages: it can be used to steer aggregation such that the orientation within aggregated structures can be predicted using rational approaches. We demonstrate this design concept for a DPA-TPE (diphenylamine-tetraphenylethylene) chromophore, which is non-emissive in its solvated state due to vibrational quenching. Turning this DPA-TPE into a ditopic linker makes it possible to grow oriented MOF thin films exhibiting pronounced green electroluminescence with low onset voltages. Measurements at different temperatures clearly demonstrate the presence of TADF. Finally, this work reports that the layer-by-layer process used for MOF thin film deposition allows the integration of the TADF-DPA-TPE in a functioning LED device.
Collapse
Affiliation(s)
- Ritesh Haldar
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz-1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Marius Jakoby
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz-1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Mariana Kozlowska
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz-1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Motiur Rahman Khan
- Light Technology Institute (LTI), Karlsruhe Institute of Technology (KIT), Engesserstrasse 13, 76131, Karlsruhe, Germany
| | - Hongye Chen
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz-1, 76344, Eggenstein-Leopoldshafen, Germany.,State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, Institute of Nano Science, Nanjing, P. R. China
| | - Yohanes Pramudya
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz-1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Bryce S Richards
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz-1, 76344, Eggenstein-Leopoldshafen, Germany.,Light Technology Institute (LTI), Karlsruhe Institute of Technology (KIT), Engesserstrasse 13, 76131, Karlsruhe, Germany
| | - Lars Heinke
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz-1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Wolfgang Wenzel
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz-1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Fabrice Odobel
- CNRS, Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation, Université de Nantes, CEISAM, UMR 6230, 4400, Nantes, France
| | - Stéphane Diring
- CNRS, Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation, Université de Nantes, CEISAM, UMR 6230, 4400, Nantes, France
| | - Ian A Howard
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz-1, 76344, Eggenstein-Leopoldshafen, Germany.,Light Technology Institute (LTI), Karlsruhe Institute of Technology (KIT), Engesserstrasse 13, 76131, Karlsruhe, Germany
| | - Uli Lemmer
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz-1, 76344, Eggenstein-Leopoldshafen, Germany.,Light Technology Institute (LTI), Karlsruhe Institute of Technology (KIT), Engesserstrasse 13, 76131, Karlsruhe, Germany
| | - Christof Wöll
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz-1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
13
|
Li Q, Hu J, Lv J, Wang X, Shao S, Wang L, Jing X, Wang F. Through‐Space Charge‐Transfer Polynorbornenes with Fixed and Controllable Spatial Alignment of Donor and Acceptor for High‐Efficiency Blue Thermally Activated Delayed Fluorescence. Angew Chem Int Ed Engl 2020; 59:20174-20182. [DOI: 10.1002/anie.202008912] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Qiang Li
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jun Hu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jianhong Lv
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Xingdong Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Shiyang Shao
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Fosong Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| |
Collapse
|
14
|
Li Q, Hu J, Lv J, Wang X, Shao S, Wang L, Jing X, Wang F. Through‐Space Charge‐Transfer Polynorbornenes with Fixed and Controllable Spatial Alignment of Donor and Acceptor for High‐Efficiency Blue Thermally Activated Delayed Fluorescence. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008912] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Qiang Li
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jun Hu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jianhong Lv
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Xingdong Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Shiyang Shao
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Fosong Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| |
Collapse
|
15
|
Luo M, Li X, Ding L, Baryshnikov G, Shen S, Zhu M, Zhou L, Zhang M, Lu J, Ågren H, Wang X, Zhu L. Integrating Time‐Resolved Imaging Information by Single‐Luminophore Dual Thermally Activated Delayed Fluorescence. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009077] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mengkai Luo
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Xuping Li
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
- Key Laboratory of Coal Science and Technology Ministry of Education and Shanxi Province Taiyuan University of Technology Taiyuan 030024 China
| | - Longjiang Ding
- Department of Chemistry Fudan University Shanghai 200438 China
| | - Gleb Baryshnikov
- Division of Theoretical Chemistry and Biology School of Biotechnology KTH Royal Institute of Technology 10691 Stockholm Sweden
| | - Shen Shen
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Mingjie Zhu
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Lulu Zhou
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Man Zhang
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Jianjun Lu
- Key Laboratory of Coal Science and Technology Ministry of Education and Shanxi Province Taiyuan University of Technology Taiyuan 030024 China
| | - Hans Ågren
- Division of Theoretical Chemistry and Biology School of Biotechnology KTH Royal Institute of Technology 10691 Stockholm Sweden
| | - Xu‐dong Wang
- Department of Chemistry Fudan University Shanghai 200438 China
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| |
Collapse
|
16
|
Luo M, Li X, Ding L, Baryshnikov G, Shen S, Zhu M, Zhou L, Zhang M, Lu J, Ågren H, Wang X, Zhu L. Integrating Time‐Resolved Imaging Information by Single‐Luminophore Dual Thermally Activated Delayed Fluorescence. Angew Chem Int Ed Engl 2020; 59:17018-17025. [DOI: 10.1002/anie.202009077] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Mengkai Luo
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Xuping Li
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
- Key Laboratory of Coal Science and Technology Ministry of Education and Shanxi Province Taiyuan University of Technology Taiyuan 030024 China
| | - Longjiang Ding
- Department of Chemistry Fudan University Shanghai 200438 China
| | - Gleb Baryshnikov
- Division of Theoretical Chemistry and Biology School of Biotechnology KTH Royal Institute of Technology 10691 Stockholm Sweden
| | - Shen Shen
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Mingjie Zhu
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Lulu Zhou
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Man Zhang
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Jianjun Lu
- Key Laboratory of Coal Science and Technology Ministry of Education and Shanxi Province Taiyuan University of Technology Taiyuan 030024 China
| | - Hans Ågren
- Division of Theoretical Chemistry and Biology School of Biotechnology KTH Royal Institute of Technology 10691 Stockholm Sweden
| | - Xu‐dong Wang
- Department of Chemistry Fudan University Shanghai 200438 China
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| |
Collapse
|
17
|
Li X, Baryshnikov G, Ding L, Bao X, Li X, Lu J, Liu M, Shen S, Luo M, Zhang M, Ågren H, Wang X, Zhu L. Dual-Phase Thermally Activated Delayed Fluorescence Luminogens: A Material for Time-Resolved Imaging Independent of Probe Pretreatment and Probe Concentration. Angew Chem Int Ed Engl 2020; 59:7548-7554. [PMID: 32073698 DOI: 10.1002/anie.202000185] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/18/2020] [Indexed: 12/23/2022]
Abstract
Developing luminescent probes with long lifetime and high emission efficiency is essential for time-resolved imaging. However, the practical applications usually suffer from emission quenching of traditional luminogens in aggregated states, or from weak emission of aggregation-induced emission type luminogens in monomeric states. Herein, we overcome this dilemma by a rigid-and-flexible alternation design in donor-acceptor-donor skeletons, to achieve a thermally activated delayed fluorescence luminogen with high emission efficiency both in the monomeric state (quantum yield up to 35.3 %) and in the aggregated state (quantum yield up to 30.8 %). Such a dual-phase strong and long-lived emission allows a time-resolved luminescence imaging, with an efficiency independent of probe pretreatment and probe concentration. The findings open opportunities for developing luminescent probes with a usage in larger temporal and spatial scales.
Collapse
Affiliation(s)
- Xuping Li
- Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan, 030024, China.,State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Gleb Baryshnikov
- Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, 10691, Stockholm, Sweden
| | - Longjiang Ding
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Xiaoyan Bao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Xin Li
- Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, 10691, Stockholm, Sweden
| | - Jianjun Lu
- Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Miaoqing Liu
- Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Shen Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Mengkai Luo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Man Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Hans Ågren
- Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, 10691, Stockholm, Sweden.,College of Chemistry and Chemical Engineering, Department of Chemistry, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Xudong Wang
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| |
Collapse
|
18
|
Li X, Baryshnikov G, Ding L, Bao X, Li X, Lu J, Liu M, Shen S, Luo M, Zhang M, Ågren H, Wang X, Zhu L. Dual‐Phase Thermally Activated Delayed Fluorescence Luminogens: A Material for Time‐Resolved Imaging Independent of Probe Pretreatment and Probe Concentration. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Xuping Li
- Key Laboratory of Coal Science and TechnologyMinistry of Education and Shanxi ProvinceTaiyuan University of Technology Taiyuan 030024 China
- State Key Laboratory of Molecular Engineering of PolymersDepartment of Macromolecular ScienceFudan University Shanghai 200438 China
| | - Gleb Baryshnikov
- Division of Theoretical Chemistry and Biology, School of BiotechnologyKTH Royal Institute of Technology 10691 Stockholm Sweden
| | - Longjiang Ding
- Department of ChemistryFudan University Shanghai 200438 China
| | - Xiaoyan Bao
- State Key Laboratory of Molecular Engineering of PolymersDepartment of Macromolecular ScienceFudan University Shanghai 200438 China
| | - Xin Li
- Division of Theoretical Chemistry and Biology, School of BiotechnologyKTH Royal Institute of Technology 10691 Stockholm Sweden
| | - Jianjun Lu
- Key Laboratory of Coal Science and TechnologyMinistry of Education and Shanxi ProvinceTaiyuan University of Technology Taiyuan 030024 China
| | - Miaoqing Liu
- Key Laboratory of Coal Science and TechnologyMinistry of Education and Shanxi ProvinceTaiyuan University of Technology Taiyuan 030024 China
| | - Shen Shen
- State Key Laboratory of Molecular Engineering of PolymersDepartment of Macromolecular ScienceFudan University Shanghai 200438 China
| | - Mengkai Luo
- State Key Laboratory of Molecular Engineering of PolymersDepartment of Macromolecular ScienceFudan University Shanghai 200438 China
| | - Man Zhang
- State Key Laboratory of Molecular Engineering of PolymersDepartment of Macromolecular ScienceFudan University Shanghai 200438 China
| | - Hans Ågren
- Division of Theoretical Chemistry and Biology, School of BiotechnologyKTH Royal Institute of Technology 10691 Stockholm Sweden
- College of Chemistry and Chemical EngineeringDepartment of ChemistryHenan University Kaifeng Henan 475004 P. R. China
| | - Xudong Wang
- Department of ChemistryFudan University Shanghai 200438 China
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of PolymersDepartment of Macromolecular ScienceFudan University Shanghai 200438 China
| |
Collapse
|
19
|
Deng Y, Li P, Sun S, Jiang H, Ji X, Li H. Proton-Activated Amorphous Room-Temperature Phosphorescence for Humidity Sensing and High-Level Data Encryption. Chem Asian J 2020; 15:1088-1093. [PMID: 32017408 DOI: 10.1002/asia.201901747] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/17/2020] [Indexed: 11/09/2022]
Abstract
Supramolecular co-assembling terpyridine-derivatives with nanoclay (LP) are exploited to acquire efficient amorphous room-temperature phosphorescence (RTP). Experimental and theoretical investigations reveal that this co-assembly not only brings about a configuration transformation from the trans-trans (a) to the cis-trans (a'') form via the protonating process, significantly narrowing the singlet-triplet energy gap, thereby effectively facilitating the single-triplet ISC processes, but also well protects the triplet state and suppresses the nonradiative transitions via restricting molecular rotation and vibration by the hydrogen-bond interactions between them. Additionally, the flexible and transparent films, through co-assembling 1@LP (or 2@LP) with polyvinyl alcohol (PVA), also display excellent phosphorescence performance. Owing to their distinctive RTP performances, the RH sensing and high-level data encryption are achieved.
Collapse
Affiliation(s)
- Yuchen Deng
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization Tianjin Key Laboratory of Chemical Process Safety School of Chemical Engineering and Technology, Hebei University of Technology, GuangRong Dao 8, Hongqiao District, Tianjin, 300130, P. R. China
| | - Peng Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization Tianjin Key Laboratory of Chemical Process Safety School of Chemical Engineering and Technology, Hebei University of Technology, GuangRong Dao 8, Hongqiao District, Tianjin, 300130, P. R. China
| | - Shujuan Sun
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization Tianjin Key Laboratory of Chemical Process Safety School of Chemical Engineering and Technology, Hebei University of Technology, GuangRong Dao 8, Hongqiao District, Tianjin, 300130, P. R. China
| | - Haiyan Jiang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization Tianjin Key Laboratory of Chemical Process Safety School of Chemical Engineering and Technology, Hebei University of Technology, GuangRong Dao 8, Hongqiao District, Tianjin, 300130, P. R. China
| | - Xu Ji
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization Tianjin Key Laboratory of Chemical Process Safety School of Chemical Engineering and Technology, Hebei University of Technology, GuangRong Dao 8, Hongqiao District, Tianjin, 300130, P. R. China
| | - Huanrong Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization Tianjin Key Laboratory of Chemical Process Safety School of Chemical Engineering and Technology, Hebei University of Technology, GuangRong Dao 8, Hongqiao District, Tianjin, 300130, P. R. China
| |
Collapse
|
20
|
Wang J, Fang Y, Li C, Niu L, Fang W, Cui G, Yang Q. Time‐Dependent Afterglow Color in a Single‐Component Organic Molecular Crystal. Angew Chem Int Ed Engl 2020; 59:10032-10036. [DOI: 10.1002/anie.202001141] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Jian‐Xin Wang
- Institution Key Laboratory of RadiopharmaceuticalsCollege of ChemistryBeijing Normal University Beijing 100875 P. R. China
| | - Ye‐Guang Fang
- Key Laboratory of Theoretical and Computational PhotochemistryMinistry of EducationCollege of ChemistryBeijing Normal University Beijing 100875 P. R. China
| | - Chun‐Xiang Li
- Key Laboratory of Theoretical and Computational PhotochemistryMinistry of EducationCollege of ChemistryBeijing Normal University Beijing 100875 P. R. China
| | - Li‐Ya Niu
- Institution Key Laboratory of RadiopharmaceuticalsCollege of ChemistryBeijing Normal University Beijing 100875 P. R. China
| | - Wei‐Hai Fang
- Key Laboratory of Theoretical and Computational PhotochemistryMinistry of EducationCollege of ChemistryBeijing Normal University Beijing 100875 P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational PhotochemistryMinistry of EducationCollege of ChemistryBeijing Normal University Beijing 100875 P. R. China
| | - Qing‐Zheng Yang
- Institution Key Laboratory of RadiopharmaceuticalsCollege of ChemistryBeijing Normal University Beijing 100875 P. R. China
| |
Collapse
|
21
|
Wang J, Fang Y, Li C, Niu L, Fang W, Cui G, Yang Q. Time‐Dependent Afterglow Color in a Single‐Component Organic Molecular Crystal. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001141] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jian‐Xin Wang
- Institution Key Laboratory of RadiopharmaceuticalsCollege of ChemistryBeijing Normal University Beijing 100875 P. R. China
| | - Ye‐Guang Fang
- Key Laboratory of Theoretical and Computational PhotochemistryMinistry of EducationCollege of ChemistryBeijing Normal University Beijing 100875 P. R. China
| | - Chun‐Xiang Li
- Key Laboratory of Theoretical and Computational PhotochemistryMinistry of EducationCollege of ChemistryBeijing Normal University Beijing 100875 P. R. China
| | - Li‐Ya Niu
- Institution Key Laboratory of RadiopharmaceuticalsCollege of ChemistryBeijing Normal University Beijing 100875 P. R. China
| | - Wei‐Hai Fang
- Key Laboratory of Theoretical and Computational PhotochemistryMinistry of EducationCollege of ChemistryBeijing Normal University Beijing 100875 P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational PhotochemistryMinistry of EducationCollege of ChemistryBeijing Normal University Beijing 100875 P. R. China
| | - Qing‐Zheng Yang
- Institution Key Laboratory of RadiopharmaceuticalsCollege of ChemistryBeijing Normal University Beijing 100875 P. R. China
| |
Collapse
|
22
|
Li W, Huang Q, Mao Z, Zhao J, Wu H, Chen J, Yang Z, Li Y, Yang Z, Zhang Y, Aldred MP, Chi Z. Selective Expression of Chromophores in a Single Molecule: Soft Organic Crystals Exhibiting Full‐Colour Tunability and Dynamic Triplet‐Exciton Behaviours. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915556] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Wenlang Li
- PCFM LabGDHPPC LabGuangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional FilmsState Key Laboratory of OEMTSchool of ChemistrySun Yat-sen University Guangzhou 510275 China
| | - Qiuyi Huang
- PCFM LabGDHPPC LabGuangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional FilmsState Key Laboratory of OEMTSchool of ChemistrySun Yat-sen University Guangzhou 510275 China
| | - Zhu Mao
- PCFM LabGDHPPC LabGuangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional FilmsState Key Laboratory of OEMTSchool of ChemistrySun Yat-sen University Guangzhou 510275 China
| | - Juan Zhao
- PCFM LabGDHPPC LabGuangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional FilmsState Key Laboratory of OEMTSchool of ChemistrySun Yat-sen University Guangzhou 510275 China
| | - Huiyan Wu
- PCFM LabGDHPPC LabGuangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional FilmsState Key Laboratory of OEMTSchool of ChemistrySun Yat-sen University Guangzhou 510275 China
| | - Junru Chen
- PCFM LabGDHPPC LabGuangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional FilmsState Key Laboratory of OEMTSchool of ChemistrySun Yat-sen University Guangzhou 510275 China
| | - Zhan Yang
- PCFM LabGDHPPC LabGuangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional FilmsState Key Laboratory of OEMTSchool of ChemistrySun Yat-sen University Guangzhou 510275 China
| | - Yang Li
- Instrumental Analysis and Research Center (IARC)Sun Yat-sen University Guangzhou 510275 China
| | - Zhiyong Yang
- PCFM LabGDHPPC LabGuangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional FilmsState Key Laboratory of OEMTSchool of ChemistrySun Yat-sen University Guangzhou 510275 China
| | - Yi Zhang
- PCFM LabGDHPPC LabGuangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional FilmsState Key Laboratory of OEMTSchool of ChemistrySun Yat-sen University Guangzhou 510275 China
| | - Matthew P. Aldred
- PCFM LabGDHPPC LabGuangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional FilmsState Key Laboratory of OEMTSchool of ChemistrySun Yat-sen University Guangzhou 510275 China
- MPAldred Bolton, Greater Manchester England BL1 2AL UK
| | - Zhenguo Chi
- PCFM LabGDHPPC LabGuangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional FilmsState Key Laboratory of OEMTSchool of ChemistrySun Yat-sen University Guangzhou 510275 China
| |
Collapse
|
23
|
Li W, Huang Q, Mao Z, Zhao J, Wu H, Chen J, Yang Z, Li Y, Yang Z, Zhang Y, Aldred MP, Chi Z. Selective Expression of Chromophores in a Single Molecule: Soft Organic Crystals Exhibiting Full-Colour Tunability and Dynamic Triplet-Exciton Behaviours. Angew Chem Int Ed Engl 2020; 59:3739-3745. [PMID: 31863709 DOI: 10.1002/anie.201915556] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Indexed: 12/30/2022]
Abstract
Soft luminescent materials are attractive for optoelectronic applications, however, switching dominant chromophores for property enrichment remains a challenge. Herein, we report the first case of a soft organic molecule (DOS) featuring selective expression of chromophores. In response to various external stimuli, different chromophores of DOS can take turns working through conformation changes, exhibiting full-colour emissions peaking from 469 nm to 583 nm from ten individual single crystals. Dynamic triplet-exciton behaviours including thermally activated delayed fluorescence (TADF), room-temperature phosphorescence (RTP), mechanoluminescence (ML), and distinct mechano-responsive luminescence (MRL) can all be realized. This novel designed DOS molecule provides a multifunctional platform for detection of volatile organic compounds (VOCs), multicolour dynamic displays, sensing, anticounterfeiting, and hopefully many others.
Collapse
Affiliation(s)
- Wenlang Li
- PCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qiuyi Huang
- PCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhu Mao
- PCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Juan Zhao
- PCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Huiyan Wu
- PCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Junru Chen
- PCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhan Yang
- PCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yang Li
- Instrumental Analysis and Research Center (IARC), Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhiyong Yang
- PCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yi Zhang
- PCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Matthew P Aldred
- PCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China.,MPAldred, Bolton, Greater Manchester, England, BL1 2AL, UK
| | - Zhenguo Chi
- PCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|