1
|
Liu M, Xia P, Zhao G, Nie C, Gao K, He S, Wang L, Wu K. Energy‐Transfer Photocatalysis Using Lead Halide Perovskite Nanocrystals: Sensitizing Molecular Isomerization and Cycloaddition. Angew Chem Int Ed Engl 2022; 61:e202208241. [DOI: 10.1002/anie.202208241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Indexed: 12/30/2022]
Affiliation(s)
- Meng Liu
- State Key Laboratory of Molecular Reaction Dynamics Dynamics Research Center for Energy and Environmental Materials Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 China
- University of the Chinese Academy of Sciences Beijing 100049 China
| | - Pan Xia
- State Key Laboratory of Molecular Reaction Dynamics Dynamics Research Center for Energy and Environmental Materials Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 China
| | - Guohui Zhao
- State Key Laboratory of Molecular Reaction Dynamics Dynamics Research Center for Energy and Environmental Materials Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 China
- University of the Chinese Academy of Sciences Beijing 100049 China
| | - Chengming Nie
- State Key Laboratory of Molecular Reaction Dynamics Dynamics Research Center for Energy and Environmental Materials Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 China
| | - Kaimin Gao
- State Key Laboratory of Molecular Reaction Dynamics Dynamics Research Center for Energy and Environmental Materials Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 China
- University of the Chinese Academy of Sciences Beijing 100049 China
| | - Shan He
- State Key Laboratory of Molecular Reaction Dynamics Dynamics Research Center for Energy and Environmental Materials Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 China
| | - Lifeng Wang
- State Key Laboratory of Molecular Reaction Dynamics Dynamics Research Center for Energy and Environmental Materials Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 China
- University of the Chinese Academy of Sciences Beijing 100049 China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics Dynamics Research Center for Energy and Environmental Materials Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 China
- University of the Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
2
|
Liu M, Xia P, Zhao G, Nie C, Gao K, he S, Wang L, Wu K. Energy‐Transfer Photocatalysis Using Lead Halide Perovskite Nanocrystals: Sensitizing Molecular Isomerization and Cycloaddition. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Meng Liu
- Chinese Academy of Sciences Dalian Institute of Chemical Physics State Key Laboratory of Molecular Reaction Dynamics CHINA
| | - Pan Xia
- Chinese Academy of Sciences Dalian Institute of Chemical Physics State Key Laboratory of Molecular Reaction Dynamics CHINA
| | - Guohui Zhao
- Chinese Academy of Sciences Dalian Institute of Chemical Physics State Key Laboratory of Molecular Reaction Dynamics CHINA
| | - Chengming Nie
- Chinese Academy of Sciences Dalian Institute of Chemical Physics State Key Laboratory of Molecular Reaction Dynamics CHINA
| | - Kaimin Gao
- Chinese Academy of Sciences Dalian Institute of Chemical Physics State Key Laboratory of Molecular Reaction Dynamics CHINA
| | - Shan he
- Chinese Academy of Sciences Dalian Institute of Chemical Physics State Key Laboratory of Molecular Reaction Dynamics CHINA
| | - Lifeng Wang
- Chinese Academy of Sciences Dalian Institute of Chemical Physics State Key Laboratory of Molecular Reaction Dynamics CHINA
| | - Kaifeng Wu
- Dalian Institute of Chemical Physics State Key Laboratory of Molecular Reaction Dynamics 457 Zhongshan RdBldg 36 116023 Dalian CHINA
| |
Collapse
|
3
|
Das S, Saha S, Sahu M, Mondal A, Reddy CM. Temperature‐Reliant Dynamic Properties and Elasto‐Plastic to Plastic Crystal (Rotator) Phase Transition in a Metal Oxyacid Salt. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202115359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Susobhan Das
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata 741246, Nadia, West Bengal India
| | - Subhankar Saha
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata 741246, Nadia, West Bengal India
- Department of Chemistry Islampur College Islampur Uttar Dinajpur, West Bengal 733202 India
| | - Mrinmay Sahu
- Department of Physical Sciences Indian Institute of Science Education and Research (IISER) Kolkata 741246, Nadia, West Bengal India
| | - Amit Mondal
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata 741246, Nadia, West Bengal India
| | - C. Malla Reddy
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata 741246, Nadia, West Bengal India
| |
Collapse
|
4
|
Das S, Saha S, Sahu M, Mondal A, Reddy CM. Temperature-Reliant Dynamic Properties and Elasto-Plastic to Plastic Crystal (Rotator) Phase Transition in a Metal Oxyacid Salt. Angew Chem Int Ed Engl 2021; 61:e202115359. [PMID: 34890475 DOI: 10.1002/anie.202115359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Indexed: 01/27/2023]
Abstract
Although, dynamic crystals are attractive for use in many technologies, molecular level mechanisms of various solid-state dynamic processes and their interdependence, remain poorly understood. Here, we report a rare example of a dynamic crystal (1), involving a heavy transition metal, rhenium, with an initial two-face elasticity (within ≈1 % strain), followed by elasto-plastic deformation, at room temperature. Further, these crystals transform to a rotator (plastic) crystal phase at ≈105 °C, displaying exceptional malleability. Qualitative and quantitative mechanical tests, X-ray diffraction, μ-Raman and polarized light microscopy experiments reveal that the elasto-plastic deformation involves both partial molecular rotations and slip, while malleability in the rotator phase is facilitated by reorientational motions and increased symmetry (slip planes). Our work, connecting the plastically bendable (1D or 2D) crystals with the rotator phases (3D), is important for designing multi-functional dynamic crystals.
Collapse
Affiliation(s)
- Susobhan Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India
| | - Subhankar Saha
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India.,Department of Chemistry, Islampur College, Islampur, Uttar Dinajpur, West Bengal 733202, India
| | - Mrinmay Sahu
- Department of Physical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India
| | - Amit Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India
| | - C Malla Reddy
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India
| |
Collapse
|
5
|
Abstract
Colloidal self-assembly refers to a solution-processed assembly of nanometer-/micrometer-sized, well-dispersed particles into secondary structures, whose collective properties are controlled by not only nanoparticle property but also the superstructure symmetry, orientation, phase, and dimension. This combination of characteristics makes colloidal superstructures highly susceptible to remote stimuli or local environmental changes, representing a prominent platform for developing stimuli-responsive materials and smart devices. Chemists are achieving even more delicate control over their active responses to various practical stimuli, setting the stage ready for fully exploiting the potential of this unique set of materials. This review addresses the assembly of colloids into stimuli-responsive or smart nanostructured materials. We first delineate the colloidal self-assembly driven by forces of different length scales. A set of concepts and equations are outlined for controlling the colloidal crystal growth, appreciating the importance of particle connectivity in creating responsive superstructures. We then present working mechanisms and practical strategies for engineering smart colloidal assemblies. The concepts underpinning separation and connectivity control are systematically introduced, allowing active tuning and precise prediction of the colloidal crystal properties in response to external stimuli. Various exciting applications of these unique materials are summarized with a specific focus on the structure-property correlation in smart materials and functional devices. We conclude this review with a summary of existing challenges in colloidal self-assembly of smart materials and provide a perspective on their further advances to the next generation.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Qingsong Fan
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
6
|
Larik FA, Fillbrook LL, Nurttila SS, Martin AD, Kuchel RP, Al Taief K, Bhadbhade M, Beves JE, Thordarson P. Ultra-Low Molecular Weight Photoswitchable Hydrogelators. Angew Chem Int Ed Engl 2021; 60:6764-6770. [PMID: 33295683 DOI: 10.1002/anie.202015703] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Indexed: 12/20/2022]
Abstract
Two photoswitchable arylazopyrozoles form hydrogels at a concentration of 1.2 % (w/v). With a molecular weight of 258.28 g mol-1 , these are the lowest known molecular weight hydrogelators that respond reversibly to light. Photoswitching of the E- to the Z-form by exposure to 365 nm light results in a macroscopic gel→sol transition; nearly an order of magnitude reduction in the measured elastic and loss moduli. In the case of the meta-arylazopyrozole, cryogenic transmission electron microscopy suggests that the 29±7 nm wide sheets in the E-gel state narrow to 13±2 nm upon photoswitching to the predominantly Z-solution state. Photoswitching for meta-arylazopyrozole is reversible through cycles of 365 nm and 520 nm excitation with little fatigue. The release of a rhodamine B dye encapsulated in gels formed by the arylazopyrozoles is accelerated more than 20-fold upon photoswitching with 365 nm light, demonstrating these materials are suitable for light-controlled cargo release.
Collapse
Affiliation(s)
- Fayaz Ali Larik
- School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia.,The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Lucy L Fillbrook
- School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Sandra S Nurttila
- School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia.,The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Adam D Martin
- Dementia Research Centre, Department of Biomedical Science, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Rhiannon P Kuchel
- Electron Microscopy Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Karrar Al Taief
- School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia.,The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Mohan Bhadbhade
- Solid State & Elemental Analysis Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jonathon E Beves
- School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Pall Thordarson
- School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia.,The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
7
|
Larik FA, Fillbrook LL, Nurttila SS, Martin AD, Kuchel RP, Al Taief K, Bhadbhade M, Beves JE, Thordarson P. Ultra‐Low Molecular Weight Photoswitchable Hydrogelators. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Fayaz Ali Larik
- School of Chemistry The University of New South Wales Sydney NSW 2052 Australia
- The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology The University of New South Wales Sydney NSW 2052 Australia
| | - Lucy L. Fillbrook
- School of Chemistry The University of New South Wales Sydney NSW 2052 Australia
| | - Sandra S. Nurttila
- School of Chemistry The University of New South Wales Sydney NSW 2052 Australia
- The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology The University of New South Wales Sydney NSW 2052 Australia
| | - Adam D. Martin
- Dementia Research Centre Department of Biomedical Science Faculty of Medicine and Health Sciences Macquarie University Sydney NSW 2109 Australia
| | - Rhiannon P. Kuchel
- Electron Microscopy Unit Mark Wainwright Analytical Centre The University of New South Wales Sydney NSW 2052 Australia
| | - Karrar Al Taief
- School of Chemistry The University of New South Wales Sydney NSW 2052 Australia
- The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology The University of New South Wales Sydney NSW 2052 Australia
| | - Mohan Bhadbhade
- Solid State & Elemental Analysis Unit Mark Wainwright Analytical Centre The University of New South Wales Sydney NSW 2052 Australia
| | - Jonathon E. Beves
- School of Chemistry The University of New South Wales Sydney NSW 2052 Australia
| | - Pall Thordarson
- School of Chemistry The University of New South Wales Sydney NSW 2052 Australia
- The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology The University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
8
|
Mondal A, Bhattacharya B, Das S, Bhunia S, Chowdhury R, Dey S, Reddy CM. Metal‐like Ductility in Organic Plastic Crystals: Role of Molecular Shape and Dihydrogen Bonding Interactions in Aminoboranes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001060] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amit Mondal
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
| | - Biswajit Bhattacharya
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
| | - Susobhan Das
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
| | - Surojit Bhunia
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
- Centre for Advanced Functional Materials (CAFM)Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
| | - Rituparno Chowdhury
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
| | - Somnath Dey
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
- Institute of CrystallographyRWTH Aachen University Jägerstraße 17–19 52066 Aachen Germany
| | - C. Malla Reddy
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
- Centre for Advanced Functional Materials (CAFM)Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
| |
Collapse
|
9
|
Mondal A, Bhattacharya B, Das S, Bhunia S, Chowdhury R, Dey S, Reddy CM. Metal‐like Ductility in Organic Plastic Crystals: Role of Molecular Shape and Dihydrogen Bonding Interactions in Aminoboranes. Angew Chem Int Ed Engl 2020; 59:10971-10980. [PMID: 32087039 DOI: 10.1002/anie.202001060] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/09/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Amit Mondal
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
| | - Biswajit Bhattacharya
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
| | - Susobhan Das
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
| | - Surojit Bhunia
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
- Centre for Advanced Functional Materials (CAFM)Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
| | - Rituparno Chowdhury
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
| | - Somnath Dey
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
- Institute of CrystallographyRWTH Aachen University Jägerstraße 17–19 52066 Aachen Germany
| | - C. Malla Reddy
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
- Centre for Advanced Functional Materials (CAFM)Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
| |
Collapse
|